
Deep Set Prediction Networks Yan Zhang, Jonathon Hare, Adam Prügel-BennettDeep Set Prediction Networks Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:

– Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
→Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
LP

(-1, -1)
(1, -1)
(1, 1)
(-1, 1)

(-1, 1)
(1, 1)
(1, -1)
(-1, -1)

• The responsibility problem:
(a)

(c) (d)

(b)

90°

ε
discontinuity

30° 60°− ε

• (a) and (b) are the same set.
→ (a) and (b) encode to the same vector.
→ (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating 90°.
→Rotation starts and ends with the same set.
→MLP outputs can’t just follow the 90° rotation!
→ There must be a discontinuity between (c) and (d)!

All the outputs have to jump 90° anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
→ Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.

MSE MSE

Encoder
Encoder

Encoder

−∂ MSE
∂ Step 0

−∂ MSE
∂ Step 1

Step 0 Step 1 Step 2 Step 10

Input Target

set loss

. . .

MSE MSE

Encoder
Encoder

Encoder

−∂ MSE
∂ Step 0

−∂ MSE
∂ Step 1

Step 0 Step 1 Step 2 Step 10

Input Target

set loss

. . .

• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
→All gradient updates ∂MSE/∂set don’t rely on the order of the set.
→Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP50 AP90 AP95 AP98 AP99

MLP baseline 99.3±0.2 94.0±1.9 57.9±7.9 0.7±0.2 0.0±0.0

RNN baseline 99.4±0.2 94.9±2.0 65.0±10.3 2.4±0.0 0.0±0.0

Ours (train 10 steps, eval 10 steps) 98.8±0.3 94.3±1.5 85.7±3.0 34.5±5.7 2.9±1.2

Ours (train 10 steps, eval 20 steps) 99.8±0.0 98.7±1.1 86.2±7.2 24.3±8.0 1.4±0.9

Ours (train 10 steps, eval 30 steps) 99.8±0.1 96.7±2.4 75.5±12.3 17.4±7.7 0.9±0.7

512d

MSE

MSE loss

ResNet34
Encoder

En
co

de
r

−∂ MSE
∂ Step 0

Step 0 Step 1 Step 10

Input Target

set loss

. . .

• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.

– Forces minimisation of MSE to converge to something sensible.

Step 2 Step 6 Step 10 Step 20

Object detection

Object attribute prediction AP∞ AP1 AP0.5 AP0.25 AP0.125

MLP baseline 3.6±0.5 1.5±0.4 0.8±0.3 0.2±0.1 0.0±0.0

RNN baseline 4.0±1.9 1.8±1.2 0.9±0.5 0.2±0.1 0.0±0.0

Ours (train 10 steps, eval 10 steps) 72.8±2.3 59.2±2.8 39.0±4.4 12.4±2.5 1.3±0.4

Ours (train 10 steps, eval 20 steps) 84.0±4.5 80.0±4.9 57.0±12.1 16.6±9.0 1.6±0.9

Ours (train 10 steps, eval 30 steps) 85.2±4.8 81.1±5.2 47.4±17.6 10.8±9.0 0.6±0.7

Input Step 5 Step 10 Step 20 Target
x, y, z = (-0.14, 1.16, 3.57) x, y, z = (-2.33, -2.41, 0.73) x, y, z = (-2.33, -2.42, 0.78) x, y, z = (-2.42, -2.40, 0.70)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z = (0.01, 0.12, 3.42) x, y, z = (-1.20, 1.27, 0.67) x, y, z = (-1.21, 1.20, 0.65) x, y, z = (-1.18, 1.25, 0.70)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z = (0.67, 0.65, 3.38) x, y, z = (-0.96, 2.54, 0.36) x, y, z = (-0.96, 2.59, 0.36) x, y, z = (-1.02, 2.61, 0.35)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z = (0.67, 1.14, 2.96) x, y, z = (1.61, 1.57, 0.36) x, y, z = (1.58, 1.62, 0.38) x, y, z = (1.74, 1.53, 0.35)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn

https://github.com/Cyanogenoid/dspn
https://github.com/Cyanogenoid/dspn

