
Learning Representations of Sets
through Optimized Permutations

https://github.com/Cyanogenoid/perm-optim

Yan Zhang, Jonathan Hare, Adam Prügel-Bennett
Learning Representations of Sets
through Optimized Permutations

https://github.com/Cyanogenoid/perm-optim

Yan Zhang, Jonathan Hare, Adam Prügel-Bennett

Introduction

Summary

To obtain a set representation, learn how to permute a set into an ordered
representation, then encode permuted set with an RNN or CNN.

•Sets are unordered collections of things:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of papers submitted to a conference,
– the set of nodes in a graph.
•How do we do Machine Learning with sets as input?
• This paper: learn latent permutation to permute the set into a canonical
sequence, then use a traditional sequential model (e.g. LSTMs) to obtain
a set representation.
–doesn’t su�er from bottleneck of sum or max pooling,
– end-to-end trainable,
– adapts to what the sequential model “likes”,
–works for permutations on lattices, such as image tiles on grids.

Permutation-Optimisation module (PO)

1
3
2

1
3
2

1 3 2

< <

> >

> <

c(P )

−∂c(P )
∂P

function to measure cost
of permutation with

improve permutation
by minimising cost:

P (0) P (1) P (T )

·
1
3
2
X

=

1
2
3

Y

X C

F
(learnable)

•Cost function c(P ) measures “quality” of permutation based on pairwise
ordering costs C.
–Cost of placing element a anywhere before b is Cab.
–Cost of placing element a anywhere after b is −Cab = Cba.
–Weighted by the current soft assignment in P .
•Gradient descent of P for T steps to minimise the cost.
•Comparison function F (a, b) produces entries of C.
–Negative when element a should be before b in the sequence, positive
when a should be after b.

–Property enforced by parametrising F (a, b) = f (a, b)− f (b, a).
• Soft permutations P (entries can be between 0 and 1) to allow di�eren-
tiation through the optimisation of P .
• Sinkhorn normalisation of P so that rows and columns of P always sum
to 1.

Image mosaics

{
}

CNN

CNN

CNN

CNN

MLP

F

MLP
...

MLP

PO ResNet-18

Crow

Ccol

Figure 1: Architecture for image mosaics. Classi�cation from a set of image tiles instead of
the original image. This uses comparisons left-to-right (Crow) and top-to-bottom (Ccol).

The network is not told what the correct image should look like; it learns
this implicitly by learning to classify.

Figure 2: Reconstructions on MNIST 3x3 as they are being optimised.

Figure 3: Reconstructions on ImageNet 2x2 as they are being optimised.

Analysis

100

50

0

50

100

75

50

25

0

25

50

75

Figure 4: Comparison of tiles left-to-right (left) and top-to-bottom (right). Blue entries
denote that the tile to the left of this entry should be on the left side (left �gure) or above
(right �gure) of the tile above the entry. Red entries denote the opposite.

Figure 5: Sensitivity of comparison to pixel locations within a tile on MNIST 2x2 (left), 3x3
(middle), 4x4 (right), for left-to-right and top-to-bottom comparisons.

Figure 6: Sensitivity of comparison to pixel locations within a tile on CIFAR10 2x2 (left), 3x3
(middle), 4x4 (right), for left-to-right and top-to-bottom comparisons.

Visual Question Answering

Object proposals

Question

BAN

Attention glimpse Attention glimpse · · ·

· · ·F → PO LSTM

Figure 7: Architecture for VQA. Simple modi�cation of state-of-the-art BAN model (Kim et
al., NeurIPS 2018). Permute the set of object proposals, then encode resulting sequence
with an LSTM. The encoding is fed back into the BAN model.

Table 1: State-of-the-art results on VQA v2. Classi�cation accuracy on validation set over
10 runs.

Model Overall Yes/No Number Other
BAN 65.96 83.34 49.24 57.17

BAN + LSTM 66.06 83.29 49.64 57.30
BAN + LSTM + PO 66.33 83.50 50.42 57.48

https://github.com/Cyanogenoid/perm-optim
https://github.com/Cyanogenoid/perm-optim
https://github.com/Cyanogenoid/perm-optim

