
University of Southampton

Faculty of Engineering and Physical Sciences

Learning to Represent and Predict Sets
with Deep Neural Networks

Yan Zhang

Thesis for the degree of Doctor of Philosophy

December, 2019

ii

iii

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

Electronics and Computer Science

Doctor of Philosophy

LEARNING TO REPRESENT AND PREDICT SETS WITH DEEP

NEURAL NETWORKS

by Yan Zhang

In this thesis, we develop various techniques for working with sets in

machine learning. Each input or output is not an image or a sequence,

but a set: an unordered collection of multiple objects, each object de-

scribed by a feature vector. Their unordered nature makes them suitable

for modeling a wide variety of data, ranging from objects in images to

point clouds to graphs. Deep learning has recently shown great success

on other types of structured data, so we aim to build the necessary

structures for sets into deep neural networks.

The �rst focus of this thesis is the learning of better set representa-

tions (sets as input). Existing approaches have bottlenecks that prevent

them from properly modeling relations between objects within the set.

To address this issue, we develop a variety of techniques for di�erent

scenarios and show that alleviating the bottleneck leads to consistent

improvements across many experiments.

The second focus of this thesis is the prediction of sets (sets as output).

Current approaches do not take the unordered nature of sets into ac-

count properly. We determine that this results in a problem that causes

discontinuity issues with many set prediction tasks and prevents them

from learning some extremely simple datasets. To avoid this problem,

we develop two models that properly take the structure of sets into

account. Various experiments show that our set prediction techniques

can signi�cantly bene�t over existing approaches.

iv

v

Contents

List of �gures ix

List of tables xi

Declaration of authorship xiii

Acknowledgements xv

List of abbreviations xvii

1 Sets in machine learning 1
1.1 List of contributions . 4

2 Basics of set neural networks 7
2.1 Overview . 7

2.2 Representation in memory 8

2.3 Set encoders . 10

2.3.1 Properties . 10

2.3.2 Speci�c set encoders 13

2.3.3 Pooling bottleneck 15

2.4 Set decoders . 15

2.4.1 Set losses . 16

2.4.2 Predicting sets 17

2.5 Other sets in machine learning 19

2.5.1 Pooling in CNNs 19

2.5.2 Per-element prediction 19

2.5.3 Multi-labeling 20

2.5.4 Clustering . 20

3 Motivation: Counting in visual question answering 21
3.1 Introduction . 21

3.2 Related work . 23

3.3 Problems with soft attention 24

3.4 Counting module . 25

3.4.1 Piecewise linear activation 26

3.4.2 Input . 27

vi

3.4.3 Deduplication 28

3.4.4 Output . 31

3.4.5 Output con�dence 31

3.5 Experiments . 32

3.5.1 Toy task . 32

3.5.2 VQA . 35

3.6 Conclusion . 41

4 Set encoder: Permutation-optimisation 43
4.1 Introduction . 43

4.2 Permutation-optimisation module 44

4.2.1 Total cost function 46

4.2.2 Optimisation problem 47

4.2.3 Ordering cost function 50

4.2.4 Extending permutations to lattices 50

4.2.5 Justi�cation for alternative update 51

4.2.6 Quadratic programming formulation 52

4.3 Related work . 52

4.4 Experiments . 54

4.4.1 Sorting numbers 55

4.4.2 Re-assembling image mosaics 56

4.4.3 Implicit permutations through classi�cation . . 59

4.4.4 Visual question answering 63

4.5 Analysis of learned comparisons 64

4.5.1 Number sorting 64

4.5.2 Image mosaics 65

4.6 Discussion . 71

5 Set auto-encoder: Featurewise sort pooling 73
5.1 Introduction . 73

5.2 Background . 74

5.3 Responsibility problem 75

5.3.1 Formal statement 77

5.4 Featurewise sort pooling 78

5.4.1 Fixed-size sets 78

5.4.2 Variable-size sets 80

5.4.3 Auto-encoder 80

5.5 Related work . 82

5.6 Experiments . 83

5.6.1 Rotating polygons 83

5.6.2 Noisy MNIST reconstruction 85

5.6.3 Noisy MNIST classi�cation 87

5.6.4 CLEVR . 89

5.6.5 Graph classi�cation 90

5.7 Discussion . 92

vii

6 Set decoder: Deep set prediction networks 95
6.1 Introduction . 95

6.2 Background . 96

6.3 Deep set prediction networks 98

6.3.1 Proof of permutation-equivariance 99

6.3.2 Auto-encoding �xed-size sets 100

6.3.3 Predicting sets from a feature vector 102

6.4 Related work . 103

6.5 Experiments . 105

6.5.1 MNIST . 105

6.5.2 Bounding box prediction 106

6.5.3 Object attribute prediction 111

6.6 Discussion . 114

7 Future work 117
7.1 Set encoders . 118

7.2 Set decoders . 119

7.2.1 Applications . 119

7.3 Latent sets in neural networks 121

A Appendix: Experimental details 123
A.1 Counting in visual question answering 123

A.2 Permutation-optimisation 124

A.2.1 Sorting numbers 124

A.2.2 Re-assembling image mosaics 125

A.2.3 Implicit permutations through classi�cation . . 126

A.2.4 Visual question answering 126

A.3 Featurewise sort pooling 127

A.3.1 Polygons . 127

A.3.2 MNIST . 128

A.3.3 CLEVR . 128

A.3.4 Graph classi�cation 128

A.4 Deep set prediction networks 129

A.4.1 MNIST . 130

A.4.2 CLEVR . 131

Bibliography 133

viii

ix

List of �gures

1.1 Examples of sets throughout the thesis 2

2.1 Basic auto-encoder model 8

2.2 Visualisations of set losses 17

3.1 Overview of counting module 22

3.2 Problem with counting using soft attention 24

3.3 Intra-object edge removal 29

3.4 Inter-object edge removal 29

3.5 Samples from the toy counting dataset 33

3.6 Accuracies on toy dataset for varying dataset parameters 34

3.7 Shapes of trained activation functions on toy dataset . 35

3.8 Shapes of trained activation functions for varying noise

on toy dataset . 36

3.9 Shapes of trained activation functions for varying box

sizes on toy dataset . 36

3.10 Network architecture for VQA 38

3.11 Example inputs and model activations 40

3.12 Shape of trained activation functions on VQA v2 41

4.1 Overview of Permutation-optimisation module 45

4.2 Network architecture for number sorting 55

4.3 Network architecture for image mosaic tasks 56

4.4 Example explicit reconstructions on MNIST 3 × 3 . . . 58

4.5 Example explicit reconstructions on CIFAR10 3 × 3 . . 58

4.6 Example explicit reconstructions on ImageNet 3 × 3 . . 59

4.7 Example implicit reconstructions on MNIST 61

4.8 Example implicit reconstructions on CIFAR10 3 × 3 . . 61

4.9 Example implicit reconstructions on 3 × 3 62

4.10 Example implicit reconstructions on CIFAR10 2 × 2 . . 62

4.11 Example implicit reconstructions on 2 × 2 63

4.12 Network architecture for visual question answering . . 64

4.13 Outputs of � for di�erent pairs of numbers as input . . 65

4.14 Outputs of 5 for di�erent pairs of numbers as input . . 65

x

4.15 Outputs of �1 and �2 for pairs of tiles from an image in

MNIST . 66

4.16 Sensitivity to positions within a tile for MNIST 67

4.17 Sensitivity to positions within a tile for CIFAR10 67

4.18 Gradient maps of pairs of tiles from MNIST 68

4.19 Gradient maps of pairs of tiles from CIFAR10 69

5.1 Set auto-encoder for demonstrating the responsibility

problem . 76

5.2 Visualisation of responsibility problem 76

5.3 Example of the set containing two points. 77

5.4 Overview of FSPool model 79

5.5 Examples from polygon dataset 83

5.6 MNIST reconstructions for varying noise 85

5.7 Shapes of learned piecewise linear functions on CLEVR 91

6.1 Overview of DSPN for auto-encoding 101

6.2 Overview of DSPN for supervised prediction 102

6.3 Progression of set prediction algorithm on MNIST . . . 106

6.4 More progression of set prediction algorithm on MNIST. 107

6.5 Progression of set prediction algorithm on bounding

box prediction . 109

6.6 More progression of set prediction algorithm on bound-

ing box prediction. 110

xi

List of tables

3.1 VQA v2 test results . 39

3.2 VQA v2 validation results 39

4.1 MSE of explicit image mosaic reconstruction 56

4.2 Accuracy with explicit image mosaic reconstruction . . 57

4.3 Accuracy with implicit reconstructions 60

4.4 MSE of implicit reconstructions 60

4.5 Accuracy on VQA v2 validation set 64

5.1 MSE on Polygon dataset 84

5.2 Chamfer loss on Polygon dataset 84

5.3 Hungarian loss on Polygon dataset 84

5.4 Chamfer losses on MNIST 86

5.5 Chamfer losses on MNIST with mask feature 86

5.6 Classi�cation accuracies on MNIST with noise for 1 and

10 epochs . 88

5.7 Classi�cation accuracies on MNIST without noise for 1

and 10 epochs . 88

5.8 Classi�cation accuracies on MNIST with and without

noise for 100 epochs . 88

5.9 Results on CLEVR . 89

5.10 Graph classi�cation results 93

6.1 Reconstruction losses on MNIST 106

6.2 Average Precision results for bounding box prediction . 109

6.3 Set encoder ablations on bounding box prediction in

CLEVR . 109

6.4 Average Precision results for state prediction 112

6.5 Set encoder ablations on state prediction in CLEVR . . 112

6.6 Progression of set prediction algorithm on state prediction 113

A.1 Graph classi�cation hyperparameters 129

xii

xiii

Declaration of
authorship

I, Yan Zhang, declare that the thesis entitled Learning to Represent and

Predict Sets with Deep Neural Networks and the work presented in the

thesis are both my own, and have been generated by me as the result of

my own original research. I con�rm that:

• this work was done wholly or mainly while in candidature for a

research degree at this University;

• where any part of this thesis has previously been submitted for a

degree or any other quali�cation at this University or any other

institution, this has been clearly stated;

• where I have consulted the published work of others, this is always

clearly attributed;

• where I have quoted from the work of others, the source is always

given. With the exception of such quotations, this thesis is entirely

my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with

others, I have made clear exactly what was done by others and

what I have contributed myself;

• parts of this work have been published as: [113, 114, 115, 116].

Signature:

Date:

xiv

xv

Acknowledgements


Adam Prügel-Bennett

Jonathon Hare

Freddie Nash

My family



xvi

xvii

List of abbreviations

Terminology

CNN Convolutional neural network

GPU Graphics processing unit

MLP Multi-layer perceptron

MSE Mean squared error

NMS Non-maximum suppression

RNN Recurrent neural network

SGD Stochastic gradient descent

VQA Visual question answering

Datasets

CIFAR-10 Tiny image dataset [59]

CLEVR Synthetic VQA dataset [52]

MNIST Handwritten digits dataset [62]

VQA v1/v2 VQA datasets [6, 37]

Models

AE-CD/AE-EMD Set auto-encoder with di�erent set losses [1]

BAN Bilinear attention network [55]

GIN Graph isomorphism network [104]

LSTM Long short-term memory RNN [43]

Faster R-CNN Region-based CNN object detector [85]

RN Relation network [88]

xviii

1

Chapter 1

Sets in machine learning

Sets are collections of things without a natural ordering to them. For

example, the types of fruit that someone has eaten in the past week

can be considered a set of fruit. While it may be possible to order them

in some way (such as by name, date last eaten, tastiness, etc.), there is

no inherently “correct” ordering. Talking about the nutritional value

of the collective {apple, raspberry, blackberry} is exactly the same as

talking about {raspberry, blackberry, apple}. The order that they are

written down in is di�erent, but the set of fruits itself is the same. This

is in contrast to data that do have a natural order, like the words in a

sentence – a sentence can lose much of its meaning when the individual

words are shu�ed around.

Such sets are a natural way of describing di�erent kinds of data in the

real world. There are many problems of interest to the machine learning

community that can be described in terms of sets: predicting the set

of objects in an image is known as object detection; Lidar scanners

on self-driving cars produce a set of 3d points of their surroundings

to �nd obstacles; properties of molecules can be predicted based on

the set of atoms and the set of bonds connecting those atoms. In all of

these examples, a machine learning model either takes a set as input or

produces a set as output.

In this thesis, we will focus on a speci�c type of machine learning

method for working with sets: deep neural networks. In recent years,

these have stood out as one of the most successful approaches on struc-

tured data like images and text. Part of this success is due to the building

blocks that these deep neural networks are made of. These building

blocks (like convolutions for images) take advantage of the structure

in the data and allow the neural networks to learn much more e�-

ciently.

2

(a)









(b)

(c) 

large cyan rubber sphere,

small blue rubber cylinder,

small purple metal cube,

small yellow metal cube,

large cyan rubber cube,

small green rubber sphere,



(d)

Figure 1.1: Example sets that we will work with throughout the thesis. (a) set of object proposals

(Chapter 3). (b) set of image tiles (Chapter 4). (c) set of points in a point cloud (Chapter 5). (d) set

of object attributes (Chapter 6).

With sets, this structure is given by their unordered nature. While

there is existing work on neural network approaches to sets (which

we brie�y review in Chapter 2), the set domain has been studied to a

much lesser extent than domains like images and text. What building

blocks are needed to adequately handle sets with neural networks? This

question is what this thesis explores by identifying shortcomings in

existing techniques and developing new techniques for modeling sets

with neural networks.

We begin by motivating our work with a benchmark task for Machine

Intelligence: visual question answering. The task requires a machine to

answer natural language questions about images, such as “how many

people are there?” about the image in Figure 1.1 (a). These questions can

be arbitrarily di�cult, so the task probes the edge of what is possible

with current machine learning techniques. While this task was initially

de�ned with images as input, extracting and using the set of objects in

the image has been found to lead to better results [4]. This makes visual

question answering a task with set inputs. We identify a problem with

existing visual question answering models in Chapter 3, which means

that counting questions like the one above are virtually impossible to

answer. We then propose a building block that �xes this issue. Our

work on this task shows that sets can be quite interesting to work

Chapter 1. Sets in machine learning 3

with and how existing methods for sets can fall short. This is what

motivated us to continue researching ways of modeling sets with neural

networks.

We move on from this speci�c application of sets to more general set

problems. There are two main directions for this: a machine learning

model can take a set as input or produce a set as output.

Sets as input In these tasks, the inputs are sets and the desired output

is something else, like a classi�cation or regression. In visual question

answering, the input is the set of object proposals (along with a question)

and the output is an answer. The objective is to extract as much relevant

information out of the set as possible. We worked on two di�erent

methods for doing this:

• In Chapter 4, we propose a way of learning to permute the elements

of the set into a list, which is easier to work with than the set.

This is based on the assumption that there are some orderings

that are easier to learn from [100], which our model tries to �nd.

• In Chapter 5, we propose a model that involves sorting the features

in the set numerically. This allows the model to learn about the

distribution of features, which can better capture relationships

between set elements.

Sets as output In these tasks, we have some input and want to pro-

duce a set as output. In object detection, the input is an image and

output is the set of objects in that image. In Chapter 5, we identify a

problem that we call the responsibility problem with existing set pre-

diction techniques, which can signi�cantly hinder the learning of the

neural network. We then propose a solution which works in the limited

scenario of auto-encoders. From what we learned through this, we

develop a general set prediction algorithm in Chapter 6 without the

auto-encoder limitation. This is the �rst neural network for predicting

sets that properly respects the unordered nature of sets, and – in our

opinion – it is the most signi�cant contribution of this thesis.

We conclude the thesis by discussing potential future research direc-

tions in Chapter 7. Sets are a natural way of modeling object-based

representations, which can be bene�cial in a much wider variety of

tasks and models than sets are currently used in.

4 1.1. List of contributions

1.1 List of contributions

Concretely, this thesis contributes the following:

Chapter 2

• We provide an accessible introduction to modeling sets with neu-

ral networks. We cover how sets are represented (Section 2.2), set

encoders (Section 2.3), set decoders (Section 2.4), and how sets

are used in other areas of machine learning (Section 2.5).

Chapter 3 These contributions have been published as [116] in the

International Conference on Learning Representations (ICLR) 2018 and

have been presented at the Visual Question Answering Challenge work-

shop, hosted at the Conference on Computer Vision and Pattern Recog-

nition (CVPR) 2018.

• We review related work on counting objects in images with neural

networks (Section 3.2).

• We identify a problem in existing VQA models and explain why

they struggle with counting questions as a result (Section 3.3).

• We propose a model for counting sets of objects that avoids this

problem (Section 3.4).

• We evaluate our model on a toy dataset that we developed for

testing counting ability in an isolated setting (Subsection 3.5.1),

and on the full VQA v2 dataset (Subsection 3.5.2).

• We open-source the code to reproduce all our experiments at:

https://github.com/Cyanogenoid/vqa-counting

and the �rst publically-available code to reproduce a strong base-

line by Kazemi et al. [53] at:

https://github.com/Cyanogenoid/pytorch-vqa.

Chapter 4 These contributions have been published as [115] in the In-

ternational Conference on Learning Representations (ICLR) 2019.

• We propose a model for learning permutations based on learning

pairwise comparisons (Section 4.2).

• We review related work on learning permutations (Section 4.3).

• We evaluate our model on sorting numbers (Subsection 4.4.1), as-

sembling image mosaics explicitly (Subsection 4.4.2) or implicitly

(Subsection 4.4.3), and VQA v2 (Subsection 4.4.4).

• We open-source the code to reproduce all experiments at:

https://github.com/Cyanogenoid/perm-optim,

https://github.com/Cyanogenoid/vqa-counting
https://github.com/Cyanogenoid/pytorch-vqa
https://github.com/Cyanogenoid/perm-optim

Chapter 1. Sets in machine learning 5

which also includes the �rst reproduction of the baseline results

by Mena et al. [70].

Chapter 5 These contributions have been presented as [114] at the

Sets & Partitions workshop, hosted at the Neural Information Processing

Systems (NeurIPS) 2019 conference, and have been submitted to the In-

ternational Conference on Learning Representations (ICLR) 2020.

• We identify a responsibility problem with existing set prediction

methods, which results in discontinuities (Section 5.3).

• We propose a set encoder based on sorting features numerically

and an associated set decoder for auto-encoding (Section 5.4).

• We review related work on using sorting in neural networks

(Section 5.5).

• We evaluate our auto-encoder on a rotating polygon toy dataset

(Subsection 5.6.1) and a set version of MNIST (Subsection 5.6.2).

• We evaluate our encoder on MNIST set classi�cation (Subsec-

tion 5.6.3), CLEVR (Subsection 5.6.4), and graph classi�cation

(Subsection 5.6.5).

• We open-source the code to reproduce all experiments at:

https://github.com/Cyanogenoid/fspool,

which also includes the �rst reproduction of the baseline graph

classi�cation results by Xu et al. [104].

Chapter 6 These contributions have been published as [113] in Ad-

vances in Neural Information Processing Systems 32 (NeurIPS) 2019

and have been presented at the Sets & Partitions workshop, hosted

at the Neural Information Processing Systems (NeurIPS) 2019 confer-

ence.

• We propose a model for general set prediction (Section 6.3) that

avoids the responsibility problem.

• We review related work on predicting sets with neural networks

(Section 6.4).

• We evaluate our model on auto-encoding MNIST sets (Subsec-

tion 6.5.1), predicting the set of bounding boxes in an image

(Subsection 6.5.2), and predicting the set of object attributes in an

image (Subsection 6.5.3).

• We open-source the code to reproduce all experiments at:

https://github.com/Cyanogenoid/dspn, which includes

an implementation of the models by Achlioptas et al. [1].

https://github.com/Cyanogenoid/fspool
https://github.com/Cyanogenoid/dspn

6 1.1. List of contributions

Chapter 7

• We discuss future research directions and open problems. We

discuss ideas in the area of set encoders (Section 7.1), set decoders

(Section 7.2), and using latent sets in neural networks (Section 7.3).

7

Chapter 2

Basics of set neural
networks

In this chapter, we will introduce the basics of working with sets using

neural networks. This provides the necessary background from the set

literature to understand this thesis, especially Chapter 4, Chapter 5, and

Chapter 6. This chapter is not an exhaustive review of the literature, but

an accessible introduction into the foundational work on modeling sets

with neural networks. We leave the more detailed discussions of related

work in the appropriate chapters, in particular Section 3.2, Section 4.3,

Section 5.5, Section 6.4.

2.1 Overview

First, let us be clear with what we mean when we talk about sets. In

essence, sets are unordered collections of entities or elements. These

entities can be objects, people, atoms, symbols, and so on. Since we are

working in machine learning, it is useful to describe each entity in the

set with a feature vector. For example, we can have the set of points

in a point cloud and store their 3d position (G~I coordinates) as the

set {[G1, ~1, I1]T, [G2, ~2, I2]T, . . .} with each [G8 , ~8 , I8]T as the feature

vector for a point in the set. Because the order of the points does not

matter – swapping the order of any two points does not change the

shape captured by the point cloud – this is indeed a set. Since the

entities in the set typically correspond to real-world things, it does not

make much practical sense to talk about in�nitely many entities. So,

the sets we work with will always have a �nite number of elements

in them. However, there is one major di�erence compared to sets in

mathematics: duplicates are typically allowed, so when we talk about

sets, we usually mean multisets (also known as bags).

8 2.2. Representation in memory

Encoder D
ec
od

er

(-1, -1)
(1, -1)
(1, 1)
(-1, 1){

{

(-1, 1)
(1, 1)
(1, -1)
(-1, -1){

{
Figure 2.1: A neural network for auto-encoding a set of four 2d points. The set encoder encodes

the input set into a feature vector, which the set decoder decodes to predict a set. Notice how the

output points are not necessarily in the same order as the input points.

Let us see how this �ts into existing machine learning setups. In tra-

ditional supervised learning, we have a dataset that consists of many

input-output pairs. The subject of interest in this thesis is when the

input or the output of the model is a set of feature vectors. These sets

usually vary in size across the dataset, so any model for sets has to be

able to work with varying set sizes.

There are two main types of operations that we care about, which we

visualise in Figure 2.1.

1. When the input is a set, we want to encode the input set into a

feature vector (Section 2.3).

2. When the output is a set, we want to decode a feature vector into

the output set (Section 2.4).

By relating sets of feature vectors with a single feature vector in this way,

we can combine these operations on sets with other, well-established

methods that operate on feature vectors. If we can also make encoding

and decoding di�erentiable, they can be included in deep neural net-

works. This gives us a fully di�erentiable model for sets that can be

trained with conventional methods for neural networks like stochastic

gradient descent (SGD) and its variants.

This di�erentiability is one of the important foundations that much

work in Deep Learning is built upon. We will take care to build our

models from di�erentiable primitives so that they easily �t into the

usual gradient-based neural network training framework. For more

background on deep neural networks, we refer you to part two of the

Deep Learning book [36].

2.2 Representation in memory

To understand how set encoding and decoding works, we �rst have to

understand how the set itself is represented.

Chapter 2. Background 9

Even though sets are orderless, we still have to store them in memory,

which forces them to be ordered in some way. Conveniently, the order

of the set elements does not matter, so we can store the elements in the

set in any arbitrary order. In essence, we treat the set of feature vectors

as if it were just a list of feature vectors, which means that we can

simply store it as a matrix. A set of size = wherein each feature vector

has dimensionality 3 can therefore be stored as an R3×= or R=×3 matrix.

We will use one or the other in the upcoming chapters depending on

what makes the narrative the clearest, but we will always clarify which

one we are using in a chapter. In this chapter, we store them as R3×=

matrices: each column corresponds to one set element.

Example 2.1

Let us look at an example. The set:



1

2

3

 ,

4

5

6


 (2.1)

has two elements of dimensionality three. It can be stored as one

of these two (equivalent) matrices:


1 4

2 5

3 6

 or


4 1

5 2

6 3

 . (2.2)

Storing the set as a matrix is memory e�cient and easy to work with

through the usual matrix operations like matrix multiplication. How-

ever, this comes with the trade-o� that there are now multiple repre-

sentations of the same set, one for each possible permutation of the set

elements. Since these di�erent representations are an artefact of the

way the set is stored in memory, a key aspect when working with sets

is to not rely on this arbitrary ordering of the elements.

There is one additional consideration for minibatch-wise training with

sets, which is needed with stochastic gradient descent. Since the set

size typically varies across the dataset, we end up with sets of di�erent

sizes in a minibatch. To make computation on a minibatch e�cient, the

typical approach is to pad all sets within a batch to a �xed size with

elements of all zeros. This �xed size is usually the size of the largest set

in the minibatch or the size of the largest set in the dataset. We then

need to keep track of which elements are padding elements to not a�ect

the result. For example, if we want to compute a mean over the set

elements, we cannot divide the sum by the number of columns in the

10 2.3. Set encoders

matrix (which includes padding elements not part of the set), but we

have to divide by the actual set size.

2.3 Set encoders

Now that we know how sets are stored, let us take a look at how such

sets can be encoded into a feature vector. We want to build a neural

network that can take a set of feature vectors as input and produce a

feature vector representation of that set as output. Set encoders can for

example be used for classifying what type of object the shape of a 3d

point cloud forms, or answering natural language questions about a set

of objects (visual question answering).

At this point, we have a matrix representation of the set and could

just use a traditional neural network approach – such as a multilayer

perceptron (MLP) – on it. The 3 × = matrix can be �attened into a 3=-

dimensional vector and we could feed this into a normal fully-connected

neural network. This is essentially what Murphy et al. [75] do, which we

discuss in more detail in Section 4.3. However, this has a major problem:

di�erent representations of the same set can give a di�erent output.

There is no guarantee that 5 ([1, 2, 3]) = 5 ([2, 3, 1]) = 5 ([3, 2, 1]) = . . .,
even though they all represent the same set {1, 2, 3}.

While a neural net as a universal approximator could learn to map all of

these to the same output, this quickly becomes infeasible for non-trivial

set sizes. With = elements in a set and thus =! di�erent representations

of the same set, an MLP quickly runs into its modeling capabilities. This

is why Murphy et al. [75] recommend sampling many permutations at

test time and averaging the results to counteract this reliance on the

arbitrary permutation.

We already know that order should not matter for sets. So, let us be

smarter about this: rather than letting the MLP learn freely, we can

structure the neural network so that it is impossible for it to rely on

the arbitrary order. This lets the neural network focus on extracting

the pertinent information in the set, without having to learn to ignore

the order at the same time. Building the necessary structures into a

neural network to properly work with sets is the key approach in this

thesis.

2.3.1 Properties

To enforce a neural network to not rely on the ordering of the set

elements, there are two properties that are important to know about. In

the context of deep neural networks, these were �rst de�ned by Zaheer

et al. [110].

Chapter 2. Background 11

Permutation-invariance The property of permutation-invariance

says that the output of a function does not change when its input is

permuted. If a permutation-invariant function is applied to a set, then

we can guarantee that regardless of which arbitrary order we stored the

elements in, we get the same output. This ensures that the arbitrarily-

chosen order of the set can never a�ect the result. A permutation-

invariant function can be thought of as serving the same purpose as

pooling in convolutional neural networks (CNNs): it reduces multiple

feature vectors to a single feature vector.

De�nition 1 A function 5 : R3×= → R2 is permutation-invariant i�

it satis�es:

5 (^) = 5 (^V) (2.3)

for all permutation matrices V .

Example 2.2

Take the set from the previous example:



1

2

3

 ,

4

5

6


 (2.4)

Summing each feature over the set is permutation-invariant.

Regardless of which order the set is stored in, we have:


1 + 4
2 + 5
3 + 6

 =


4 + 1
5 + 2
6 + 3

 =


5

7

9

 . (2.5)

We can do this because summing (as well as other operations like

calculating the mean, maximum, or the product) is commutative

and associative.

Another permutation-invariant function is numerical sorting.

We will elaborate on how to make use of this in Chapter 5.

When building set encoders, this property of permutation-invariance is

what is ultimately needed. However, in the example, there are currently

no weights to be learned and the possible operations are quite simplis-

tic. Using a single sum as set encoder can only express rather basic

information about the set. This is where the second property comes in,

which adds in learnable weights.

12 2.3. Set encoders

Permutation-equivariance Permutation-equivariance says that the

output of a function changes in a predictable way when its input is

permuted. The di�erence to the permutation-invariance property is

that the output is still a set, not a single feature vector. Changing the

order of the input should only change the order of the output, not any

of its values. Again, this property is to ensure that the arbitrary order

of the set elements does not a�ect the result.

De�nition 2 A function 6 : R3×= → R2×= is permutation-equivariant

i� it satis�es:

6(^V) = 6(^)V (2.6)

for all permutation matrices V .

Example 2.3

The most important permutation-equivariant function is apply-

ing a function on each set element, i.e. on each feature vector.

Since this function is applied on each set element individually,

it does not take the order into account, so it is permutation-

equivariant. Let us see what happens on our running example

with the function 6(x) = ∑
8 G8 .


1 4

2 5

3 6


6
−→

 6
©­­«
1

2

3

ª®®¬ 6
©­­«
4

5

6

ª®®¬
 =

[
6 15

]
(2.7)


4 1

5 2

6 3


6
−→

 6
©­­«
4

5

6

ª®®¬ 6
©­­«
1

2

3

ª®®¬
 =

[
15 6

]
(2.8)

Swapping the �rst and second element of the input also swaps the

�rst and second element of the output. A widely-used choice for

6 is a neural network, which lets the model learn a transformation

of the set elements. Another popular choice is concatenation of

the same feature vector to every element, which is common in

soft attention models [9, 73].

With the two main properties in place, we can start combining functions

with these properties to give us more complex functions.

Corollary 1 The composition of two permutation-equivariant functions

6 and ℎ is permutation-equivariant.

Chapter 2. Background 13

Proof.

ℎ
(
6(^V)

)
= ℎ

(
6(^)V

)
= ℎ

(
6(^)

)
V (2.9)

�

Corollary 2 The composition of a permutation-equivariant function 6

with a permutation-invariant function 5 is permutation-invariant.

Proof.

5
(
6(^V)

)
= 5

(
6(^)V

)
= 5

(
6(^)

)
(2.10)

�

This means that we can compose equivariant and invariant functions

to build learnable and more powerful set encoders while still being

permutation-invariant on the whole.

2.3.2 Speci�c set encoders

Let us look at some speci�c examples of set encoder architectures used

in the literature.

Deep Sets One of the simplest set encoders is the Deep Sets model

by Zaheer et al. [110]. At its core, it is de�ned as:

ℎ(^) = ?
(∑
x∈^

6(x)
)

(2.11)

We use x ∈ ^ to refer to the columns in the matrix ^ , which correspond

to the di�erent set elements. The set encoder ℎ applies a neural network

6 on every set element x (permutation-equivariant), then sums over the

transformed set (permutation-invariant). The feature vector result of

this is fed into another neural network ? to perform the task at hand,

such as classi�cation. While this seems quite basic, it turns out that it

is a universal approximator for permutation-invariant functions [110,

102].

Relation Networks Of course, universal approximation does not

mean that the set encoder problem is solved, since it says nothing about

learnability and generalisation. Just like how there are improvements

to neural networks with a single hidden layer (which are already ca-

pable of universal approximation [26]), there are improvements to the

14 2.3. Set encoders

Deep Sets model as well. One such improvement are Relation Net-

works [88]:

ℎ(^) = ? ©­«
∑

x,~∈^
6(x,~)ª®¬ (2.12)

The di�erence here is that the sum is not over the transformed set

elements, but over the transformed pairs of set elements. Expanding the

set into the set of all pairs �rst is permutation-equivariant. To model

relations between di�erent elements, the Deep Sets model can only

let information from the set elements interact through the sum. With

the Relation Network, 6 can model relations between pairs of elements

much more easily since it receives the pairs as inputs. This has been

successfully used in tasks where relations between set elements are

important [111, 79, 45]. This comes at the cost of Θ(=2) time complexity,

compared to the Θ(=) complexity of Deep Sets.

PointNet PointNet is a model designed for 3d point clouds. There

are two main di�erences to what we have seen earlier: the permutation-

invariant function is not a sum, but a maximum, and there are multiple

stages of encoding.

ℎ1(^) = ?1
(
max

x∈^
61(x)

)
(2.13)

ℎ2(^) = ?2
(
max

x∈^
62(Concat[x, ℎ1(^)])

)
(2.14)

Here, the set is �rst encoded to a feature vector using an elementwise

maximum in ℎ1. This feature vector is concatenated to each element of

the set again, and this new set is once again encoded. This two-stage

process lets global information about the set (obtained withℎ1) be shared

with the individual elements, which can then a�ect the representation

in ℎ2. Concatenation of a �xed feature vector to every element of the

set is permutation-equivariant, since it is simply a function applied to

every element. ?1, ?2, 61, and 62 are once again MLPs with trainable

weights.

Attention Soft attention attempts to model the human ability to focus

on one thing out of many things. While not a full set encoder by itself,

this is used as a building block in not only set encoders, but also in

image and text encoders. The typical soft attention model [73, 9] takes

in a set and additional contextual information as input, and “attends” to

part of the set that is relevant to that context. This will come in use in

Chapter 3, where the context is the question about the set.

Chapter 2. Background 15

ℎ(^ , z) =
∑
x∈^

6(x, z)x (2.15)

6(x, z) is a neural network that outputs a scalar – which makes this a

weighted sum – and is also often normalised with a softmax function so

that it is a weighted average of the elements x . The speci�c weightings

depend on the context vector z.

Elements where 6 has a high value have a greater in�uence on the result

than where 6 is low. By giving certain elements higher weightings than

others, the model can “focus” on the relevant elements of the set.

A modi�cation of this idea called self-attention [99] has recently found

great success in language modeling. In essence, every x is used as z to

attend on the ^ set (this is where the “self” comes from), rather than

using a single z from a separate model. This model is related to Relation

Networks, since all pairs of x,~ ∈ ^ are modeled by 6 again.

The example set encoders we have covered here demonstrate how com-

positions of permutation-invariant and permutation-equivariant func-

tions are used in practice.

2.3.3 Pooling bottleneck

We mentioned earlier that the typical permutation-invariant primitives

have no learnable parameters. Operations like sum and max are very

simple, but have to compress a (potentially very large) set into a feature

vector in a single step. This heavy compression can discard a lot of

information that could be useful for the downstream task [75, 83].

This is what motivates us to develop learned, permutation-invariant

approaches in Chapter 4 and Chapter 5. We show that by having a

more sophisticated, learned model for this step, results are frequently

improved. Due to the nature of composability of these set function

properties, replacing the sum or max pooling in an existing set encoder

with our approaches is straightforward.

2.4 Set decoders

Set decoders turn a feature vector into a set and are used when the

desired output is set-structured. There are a variety of such tasks,

ranging from object detection (predicting the set of objects in an image)

to molecule generation (predicting the set of atoms and the set of bonds

connecting them). This problem turns out to be much less studied than

the set encoder case.

16 2.4. Set decoders

There are two new aspects to consider: how can we make this set

prediction with a neural network, and how can we compute a loss

between sets to use as the training objective?

2.4.1 Set losses

Regardless of how the set is predicted, we have to compute the loss

between the predicted set and a ground-truth set in order to train

the model. The problem here is that both predicted set as well as

ground-truth set are in an arbitrary order. Naïvely computing a pairwise

loss – such as a mean squared error – does not work, since there is

no guarantee that the elements are in the same order in the matrix

representation.

Example 2.4

Let us say that the prediction that a model has made is:


1 4

2 5

3 6

 (2.16)

but the set label was stored as:


4 1

5 2

6 3

 . (2.17)

The model made the correct prediction of {[1, 2, 3]T, [4, 5, 6]T},
but a mean squared error would incorrectly think that the pre-

diction was wrong. The order of the elements in the target set

is arbitrary, so it is impossible for the model to guess the order.

By pairing up the �rst column in the prediction with the second

column in the label and vice versa, this issue is resolved.

Since the loss should not be a�ected by the order of either set, we need

something that is permutation-invariant in both its arguments. One

such loss is the Chamfer loss, which matches up every element of a

predicted set _̂ = [~̂1, ~̂2, . . .] to the closest element in the target set

_ = [~1,~2, . . .] and vice versa. A normal pairwise loss – like a mean

squared error – is used to measure this closeness.

!cha(_̂ , _) =
∑
8

min

9

~̂8 −~ 9

2 +∑
9

min

8

~̂8 −~ 9

2 (2.18)

Chapter 2. Background 17

Chamfer loss Hungarian loss

Figure 2.2: Example of the assignments of the Chamfer loss (left) and Hungarian loss (right).

Orange points mark the target set, blue points mark the predicted set. The arrows show which

direction the loss pulls a predicted point. Each point of one colour (e.g. orange) is matched up

with the closest point of the other colour (e.g. blue). Blue arrows denote assignments from the

�rst term in Equation 2.18, orange arrows denote assignments from the second term.

The nested sums and minimisations ensure the desired permutation

invariance in both arguments. One issue is that one element in one

set can be matched up with multiple elements in the other set. This

means that there can be issues with di�erent set sizes and duplicates:

the loss between [1, 1, 2] and [1, 2, 2, 2] is 0, even though the multisets

that are represented are clearly di�erent. Conceptually, the Chamfer

loss treats the inputs as proper sets, not the multisets that we usually

work with.

A more sophisticated loss that does not have this problem involves

the linear assignment problem with the pairwise losses as assignment

costs:

!hun(_̂ , _) = min

c ∈Π

~̂8 −~c (8)

2 (2.19)

where Π is the space of all permutations. This minimisation can be

solved exactly with the Hungarian algorithm and has the bene�t of

assigning each element in one set to exactly one element from the other

set. This comes with the trade-o� of Θ(=3) time complexity and that it

is not easily parallelisable. We visualise the di�erence between these

two losses in Figure 2.2, which shows the Hungarian loss matching up

elements one-to-one.

2.4.2 Predicting sets

Now that we know how to de�ne the training objective for set prediction

models, we need a model that is able to predict sets. The main approach

18 2.4. Set decoders

to predicting sets in the literature is to use an MLP or RNN that simply

predicts the matrix representation of the set. To predict a set of size

= with vectors of size 3 , an MLP with =3 number of outputs is used.

Alternatively, the initial state of an RNN (such as an LSTM [43]) with

3 hidden units is initialised with the input feature vector and run for

= steps to produce the = × 3 outputs. To handle sets with variable

sizes, one option is to pad all sets in a dataset with zeros to a �xed size

and concatenate an additional feature to each set element, indicating

whether that element is a padding element. These two approaches are

essentially the only general ways to predict sets in the literature without

making domain-speci�c assumptions about the sets.

Aside: Object detection

For some specialised tasks like object detection, there are existing

approaches like Faster R-CNN [85] that are not based on sets, but

a combination of heuristics. These are speci�cally tuned to the

image domain input and have certain drawbacks that a set-based

approach avoids. A set-based approach has the advantage of

being fully end-to-end di�erentiable, which potentially improves

the quality of the predictions compared to a multi-stage object

detector like Faster R-CNN. Traditional object detectors also

require post-processing of the outputs outside of the training al-

gorithm with techniques like non-maximum suppression, which

is somewhat inelegant.

The goal of this thesis is to explore approaches which work

generically for sets, without requiring input domain-speci�c

changes. Therefore, we limit ourselves to feature vectors as input

when predicting sets. Structured data like image feature maps

can always be turned into a feature vector, but not necessarily

vice versa.

These methods are somewhat unsatisfying, since they treat the set as

if it were just a list, with the only di�erence to predicting a list being

the use of the set loss. The MLP and RNN outputs are ordered, but

they are used to predict sets, which are unordered. We indeed �nd in

Section 5.3 that this can cause a responsibility problem. The mismatch

between ordered MLP or RNN outputs and unordered sets results in

discontinuity issues which hinders learning. The study in Chapter 5 is

in part about this problem and our solution to it in the auto-encoding

setting. Then, we build on this work to develop a set prediction method

in Chapter 6 without the responsibility problem that is no longer limited

to the auto-encoder setting. We show that our method can perform

tasks like end-to-end object detection in a purely set-based way.

Chapter 2. Background 19

2.5 Other sets in machine learning

In this section, we discuss some related topics on sets in machine learn-

ing. This puts our work on sets into a broader context.

2.5.1 Pooling in CNNs

Global average pooling, which is commonly applied at the end of CNNs

such as ResNets [41], average the feature vectors across all spatial

positions in the CNN feature map. Essentially, global average pooling

treats the di�erent spatial positions as if they were a set. The same

applies to global max pooling in order to summarise a feature map into

a feature vector, which has been used by Perez et al. [82]. This can lead

to surprising consequences where small patches of the input image can

be shu�ed around and processed independently (just like a set) without

much loss of performance [16].

On a smaller scale, this applies to the non-global average and max

pooling as well. For max pooling with a kernel size of 2 × 2, the four

input feature vectors are treated as if they were a set.

Since these pooling methods are simply permutation-invariant func-

tions, we can substitute them with any other permutation-invariant

function. Our methods in Chapter 4 and Chapter 5 could therefore be

used in CNNs. However, it is unclear whether they would make any

signi�cant di�erence with the much greater importance of convolutions

over poolings in CNNs.

2.5.2 Per-element prediction

In some tasks, we have a set as input and want to predict something

about each element of the set, rather than the set as a whole. In other

words, these are set-to-set problems. While each element could be inde-

pendently predicted, there is some prior belief that there is additional

information to be gained from considering the other elements in the

set at the same time. An example of this is detecting an outlier in a set

of inputs [63]: determining an outlier requires �nding commonalities

between the non-outliers, so it is sensible to make a prediction about

all elements in the set at once rather than one-by-one.

Unlike in set encoders, we want the output in these models to be equi-

variant rather than invariant. If ℎ([a, b, c]) = [a′, b ′, c ′], then changing

the input to ℎ([b, a, c]) should give us [b ′, a′, c ′]. Because the order of

the output is always the same as the input, there is no responsibility

problem and no need for the assignment-based set losses. This makes it

an easier problem than something like image-to-set. We will make use

of this bene�t in Chapter 5.

20 2.5. Other sets in machine learning

Taking a step back, supervised learning with a dataset is itself a set

problem. The inputs in the dataset are fed into a model – the ma-

chine learning algorithm – which predicts an output for each element

in the set (set-to-set). There is usually a loss over the dataset, which

is permutation-invariant by averaging or summing across the indi-

vidual losses. From this, computing things like m loss/m parameters is

permutation-invariant too. Training algorithms that do not use the

whole dataset at once (like SGD) are made invariant in expectation by

randomly sampling from the dataset. Using a permutation of the dataset

that is easier to learn with is known as curriculum learning [15].

2.5.3 Multi-labeling

Multi-labeling tasks can be seen as set prediction problems, where the

goal is predict a set of labels. These labels come from a �xed, �nite set of

all possible labels. The main di�erence to our set prediction setup is that

because there are only a �nite number of possible labels, we can pick a

�xed arbitrary ordering for these labels just like in classi�cation or word

embeddings. An n-hot vector encoding (a vector with a 0 in a dimension

if the label is not present and a 1 when the label is present) therefore

su�ces for multi-label classi�cation, though more set-oriented methods

have also been studied [40, 12].

In contrast, the sets we are working with have vectors in R3 as elements.

With in�nitely many possible elements, there is no order we can enforce

on the set elements a priori, so the strategy for multi-labeling does not

work. Choosing one anyway results discontinuities in the labels, similar

to the responsibility problem that we discuss in Section 5.3. This is why

we need something like our model in Chapter 6 to predict these more

complex sets with elements in R3 .

2.5.4 Clustering

Lastly, clustering can be seen as a set prediction task. The goal in

clustering is to �nd a partitioning of the input set where “similar” points

are grouped into the same partition. So, the output is a set of sets,

where the inner sets contain the elements of the input. This is usually

done in an unsupervised setting, while our method in Chapter 6 works

in the supervised learning setting. Our approach to set prediction

could be used to train a supervised clustering algorithm like Finley et

al. [31].

21

Chapter 3

Motivation: Counting in
visual question
answering

In this chapter, we will motivate our work on sets with the visual

question answering task. We will develop a method for counting sets of

object proposals that have associated bounding box information. These

sets can be obtained from traditional object detectors.

When we worked on this problem, our focus was not on sets in gen-

eral, but speci�cally the set of object proposals. We later realised the

fundamental importance of properly using the given set representation,

which motivated us to study sets more generally in later chapters.

These contributions have been published as [116] in the International

Conference on Learning Representations (ICLR) 2018 and have been pre-

sented at the Visual Question Answering Challenge workshop, hosted

at the Conference on Computer Vision and Pattern Recognition (CVPR)

2018.

3.1 Introduction

Consider the problem of counting how many cats there are in Figure 3.1.

Solving this involves several rough steps: understanding what instances

of that type can look like, �nding them in the image, and adding them up.

This is a common task in visual question answering (VQA) – answering

questions about images – and is rated as among the tasks requiring the

lowest human age to be able to answer [6]. However, current models

for VQA on natural images struggle to answer any counting questions

successfully outside of dataset biases [49].

22 3.1. Introduction

a G

Figure 3.1: Simpli�ed example about counting the number of cats. The light-coloured cat is

detected twice and results in a duplicate proposal. This shows the conversion from the attention

weights a to a graph representation G and the eventual goal of this module with exactly one

proposal per true object. There are 4 proposals (vertices) capturing 3 underlying objects (groups

in dotted lines). There are 3 relevant proposals (black with weight 1) and 1 irrelevant proposal

(white with weight 0). Red edges mark intra-object edges between duplicate proposals and blue

edges mark the main inter-object duplicate edges. In graph form, the object groups, colouring of

edges, and shading of vertices serve illustration purposes only; the model does not have these

access to these directly.

One reason for this is the presence of a fundamental problem with

counting in the widely-used soft attention mechanisms (Section 3.3)

that we identify. Another reason is that unlike standard counting tasks,

there is no ground truth labelling of where the objects to count are.

Coupled with the fact that models need to be able to count a large variety

of objects and that, ideally, performance on non-counting questions

should not be compromised, the task of counting in VQA seems very

challenging.

To make this task easier, we can use object proposals – a set of pairs of

a bounding box and object features – from object detection networks

as input instead of learning from pixels directly. In any moderately

complex scene, this runs into the issue of double-counting overlapping

object proposals. This is a problem present in many natural images,

which leads to inaccurate counting in real-world scenarios.

Our main contribution is a di�erentiable neural network module that

tackles this problem and consequently can learn to count (Section 3.4).

Used alongside an attention mechanism, this module avoids a fundamen-

tal limitation of soft attention while producing strong counting features.

As the input is a set, we build our model to be permutation-invariant

to the order of the object proposals. We then provide experimental

evidence of the e�ectiveness of this module (Section 3.5). On a toy

dataset, we demonstrate that this module enables robust counting in

a variety of scenarios. On the number category of the VQA v2 Open-

Ended dataset [37], a relatively simple baseline model using the counting

module outperforms all previous models – including large ensembles

of state-of-the-art methods – without degrading performance on other

categories.

Chapter 3. Counting in VQA 23

3.2 Related work

Usually, greedy non-maximum suppression (NMS) is used to eliminate

duplicate bounding boxes. The main problem with using it as part of a

model is that its gradient is piecewise constant. Various di�erentiable

variants such as by Azadi et al. [8], Hosang et al. [44], and Henderson

et al. [42] exist. The main di�erence is that, since we are interested in

counting, our module does not need to make discrete decisions about

which bounding boxes to keep; it outputs counting features, not a

smaller set of bounding boxes. Our module is also easily integrated into

standard VQA models that utilise soft attention without any need for

other network architecture changes and can be used without using true

bounding boxes for supervision.

On the VQA v2 dataset [37] that we apply our method on, only few ad-

vances on counting questions have been made. The main improvement

in accuracy is due to the use of object proposals in the visual processing

pipeline, proposed by Anderson et al. [4]. Their object proposal network

is trained with classes in singular and plural forms, for example “tree”

versus “trees”, which only allows primitive counting information to

be present in the object features after region-of-interest pooling. Our

approach di�ers in the way that instead of relying on counting features

being present in the input, we create counting features using informa-

tion present in the attention map over object proposals. This has the

bene�t of being able to count anything that the attention mechanism can

discriminate instead of only objects that belong to the predetermined

set of classes that had plural forms.

Using these object proposals, Trott et al. [98] train a sequential counting

mechanism with a reinforcement learning loss on the counting question

subsets of VQA v2 and Visual Genome. They achieve a small increase in

accuracy and can obtain an interpretable set of objects that their model

counted, but it is unclear whether their method can be integrated into

traditional VQA models due to their loss not applying to non-counting

questions. Since they evaluate on their own dataset, their results can

not be easily compared to existing results in VQA.

Methods such as by Santoro et al. [88] and Perez et al. [82] can count on

the synthetic CLEVR VQA dataset [51] successfully without bounding

boxes and supervision of where the objects to count are. They also use

more training data (∼250,000 counting questions in the CLEVR training

set versus ∼50,000 counting questions in the VQA v2 training set), much

simpler objects, and synthetic question structures.

24 3.3. Problems with soft attention

F

F

F

Image 1

Image 2

F

F

F

Attention

1.0

0.5

0.5

S
o

f
t
m

a
x

∑
∑ =

{ }{
}

Figure 3.2: Example demonstrating the problem with using soft attention for counting. The

resulting two feature vectors are the same for the two images, even though the images show a

di�erent number of stars.

More traditional approaches based on Lempitsky et al. [65] learn to

produce a target density map, from which a count is computed by inte-

grating over it. In this setting, Cohen et al. [24] make use of overlaps of

convolutional receptive �elds to improve counting performance. Chat-

topadhyay et al. [21] use an approach that divides the image into smaller

non-overlapping chunks, each of which is counted individually and com-

bined together at the end. In both of these contexts, the convolutional

receptive �elds or chunks can be seen as sets of bounding boxes with

a �xed structure in their positioning. Note that while Chattopadhyay

et al. [21] evaluate their models on a small subset of counting ques-

tions in VQA, major di�erences in training setup make their results not

comparable to our work.

3.3 Problems with soft attention

The main message in this section is that using the feature vectors ob-

tained after the attention mechanism is not enough to be able to count;

the attention maps themselves should be used, which is what we do in

our counting module.

Models in VQA have consistently bene�ted from the use of soft at-

tention [73, 10] on the image, commonly implemented with a shallow

convolutional network. It learns to output a weight for the feature vector

at each spatial position in the feature map, which is �rst normalised and

then used for performing a weighted sum over the spatial positions to

produce a single feature vector. However, soft spatial attention severely

limits the ability for a model to count.

Consider the task of counting the number of stars for two images (Fig-

ure 3.2): an image showing a single star on a clean background and an

image that consists of two side-by-side copies of the �rst image. What

we will describe applies to both spatial feature maps and sets of object

proposals as input, but we focus on the latter case for simplicity. With

Chapter 3. Counting in VQA 25

an object detection network, we detect one star in the �rst image and

two stars in the second image, producing the same feature vector for

all three detections. The attention mechanism then assigns all three

instances of the same star the same weight.

The usual normalisation used for the attention weights is the softmax

function, which normalises the weights to sum to 1. Herein lies the

problem: the star in the �rst image receives a normalised weight of 1,

but the two stars in the second image now each receive a weight of 0.5.

After the weighted sum, we are e�ectively averaging the two stars in

the second image back to a single star. As a consequence, the feature

vector obtained after the weighted sum is exactly the same between

the two images and we have lost all information about a possible count

from the attention map. Any method that normalises the weights to

sum to 1 su�ers from this issue.

Multiple glimpses [60] – sets of attention weights that the attention

mechanism outputs – or several steps of attention [106, 69] do not

circumvent this problem. Each glimpse or step can not separate out

an object each, since the attention weight given to one feature vector

does not depend on the other feature vectors to be attended over. Hard

attention [9, 73] and structured attention [56] may be possible solutions

to this, though no signi�cant improvement in counting ability has

been found for the latter so far [118]. Ren et al. [84] circumvent the

problem by limiting attention to only work within one bounding box

at a time, remotely similar to our approach of using object proposal

features.

Without normalisation of weights to sum to one, the scale of the output

features depends on the number of objects detected. In an image with

10 stars, the output feature vector is scaled up by 10. Since deep neural

networks are typically very scale-sensitive – the scale of weight initiali-

sations and activations is generally considered quite important [72] –

and the classi�er would have to learn that joint scaling of all features is

somehow related to count, this approach is not reasonable for counting

objects. This is shown in Teney et al. [97] where they provide evidence

that sigmoid normalisation not only degrades accuracy on non-number

questions slightly, but also does not help with counting.

3.4 Counting module

In this section, we describe a di�erentiable mechanism for counting from

attention weights, while also dealing with the problem of overlapping

object proposals to reduce double-counting of objects. This involves

some nontrivial details to produce counts that are as accurate as possible.

The main idea is illustrated in Figure 3.1 with the two main steps shown

26 3.4. Model

in Figure 3.3 and Figure 3.4. The use of this module allows a model to

count while still being able to exploit the bene�ts of soft attention.

Our key idea for dealing with overlapping object proposals is to turn

these object proposals into a graph that is based on how they overlap.

We then remove and scale edges in a speci�c way such that an estimate

of the number of underlying objects is recovered.

Our general strategy is to primarily design the module for the unre-

alistic extreme cases of perfect attention maps and bounding boxes

that are either fully overlapping or fully distinct. By introducing some

parameters and only using di�erentiable operations, we give the ability

for the module to interpolate between the correct behaviours for these

extreme cases to handle the more realistic cases. These parameters

are responsible for handling variations in attention weights and partial

bounding box overlaps in a manner suitable for a given dataset.

3.4.1 Piecewise linear activation

To introduce these parameters, we use several piecewise linear functions

51, . . . , 58 as activation functions, approximating arbitrary functions

with domain and range [0, 1]. We show how these functions look

after training in Figure 3.7 (page 35). The shapes of these functions

are learned to handle the speci�c nonlinear interactions necessary for

dealing with overlapping proposals. Through their parametrisation

we enforce that 5: (0) = 0, 5: (1) = 1, and that they are monotonically

increasing. The �rst two properties are required so that the extreme

cases that we explicitly handle are left unchanged. In those cases, 5: is

only applied to values of 0 or 1, so the activation functions can be safely

ignored for understanding how the module handles them. By enforcing

monotonicity, we can make sure that, for example, an increased value

in an attention map should never result in the prediction of the count

to decrease.

Intuitively, the interval [0, 1] is split into 3 equal size intervals. Each

contains a line segment that is connected to the neighbouring line

segments at the boundaries of the intervals. These line segments form

the shape of the activation function.

For each function 5: , there are 3 weightsF:1, . . . ,F:3 , where the weight

F:8 is the gradient for the interval [8−1
3
, 8
3
). We arbitrarily �x 3 to be

16 in this chapter, observing no signi�cant di�erence when changing

it to 8 and 32 in preliminary experiments. All F:8 are enforced to be

non-negative by always using the absolute value of them, which yields

Chapter 3. Counting in VQA 27

the monotonicity property. Dividing the weights by

∑3
< |F:< | yields

the property that 5 (1) = 1. The function can be written as

5: (G) =
3∑
8=1

max(0, 1 − |3G − 8 |)
∑8
9=1 |F: 9 |∑3
<=1 |F:< |

(3.1)

In essence, the max term selects the two nearest boundary values of an

interval, which are normalised cumulative sums over theF: weights,

and linearly interpolates between the two. This approach is similar to

the subgradient approach by Jaderberg et al. [50] to make sampling

from indices di�erentiable. All F:8 are initialised to 1, which makes

the functions linear on initialisation. When applying 5: (x) to a vector-

valued input x , it is assumed to be applied elementwise. By caching the

normalised cumulative sum

∑8
9 |F: 9 |/

∑3
< |F:< |, this function has linear

time complexity with respect to 3 and is e�ciently implementable on

GPUs.

Extensions to this are possible through Deep Lattice Networks [109],

which preserve monotonicity across several nonlinear neural network

layers. They would allow G and J to be combined in more sophisticated

ways beyond an elementwise product, possibly improving counting

performance as long as the property of the range lying within [0, 1] is

still enforced in some way.

3.4.2 Input

Given a set of features from object proposals, an attention mechanism

produces a weight for each proposal based on the question. The counting

module takes as input the = largest attention weights a = [01, . . . , 0=]T

and their corresponding bounding boxes b = [11, . . . , 1=]T. We assume

that the weights lie in the interval [0, 1], which can easily be achieved

by applying a logistic function on the attention map.

In the extreme cases that we explicitly handle, we assume that the

attention mechanism assigns a value of 1 to 08 whenever the 8th proposal

contains a relevant object and a value of 0 whenever it does not. This

is in line with what usual soft attention mechanisms learn, as they

produce higher weights for relevant inputs. We also assume that either

two object proposals fully overlap (in which case they must be showing

the same object and thus receive the same attention weight) or that

they are fully distinct (in which case they show di�erent objects). Keep

in mind that while we make these assumptions to make reasoning

about the behaviour easier, the learned parameters in the activation

functions are intended to handle the more realistic scenarios when the

assumptions do not apply.

28 3.4. Model

Instead of partially overlapping proposals, the problem now becomes

the handling of exact duplicate proposals of underlying objects in a

di�erentiable manner.

3.4.3 Deduplication

We start by changing the vector of attention weights a into a graph

representation in which bounding boxes can be utilised more easily.

Hence, we compute the outer product of the attention weights to obtain

an attention matrix.

G = aaT (3.2)

G ∈ R=×= can be interpreted as an adjacency matrix for a weighted di-

rected graph. In this graph, the 8th vertex represents the object proposal

associated with 08 and the edge between any pair of vertices (8, 9) has

weight 080 9 . In the extreme case where 08 is virtually 0 or 1, products

are equivalent to logical AND operators. It follows that the subgraph

containing only the vertices satisfying 08 = 1 is a complete digraph with

self-loops.

In this representation, our objective is to eliminate edges in such a way

that, conceptually, the underlying true objects – instead of proposals

thereof – are the vertices of that complete subgraph. In order to then

turn that graph into a count, recall that the number of edges |� | in a

complete digraph with self-loops relates to the number of vertices |+ |
through |� | = |+ |2. |� | can be computed by summing over the entries

in an adjacency matrix and |+ | is then the count. Notice that when

|� | is set to the sum over G, |� | = ∑
8 9 a8a 9 = (

∑
8 a8)2, which implies

|+ | = ∑
8 a8 . This convenient property implies that when all proposals

are fully distinct, the module can output the same as simply summing

over the original attention weights by default.

There are two types of duplicate edges to eliminate to achieve our

objective: intra-object edges and inter-object edges.

Intra-object edges

First, we eliminate intra-object edges between duplicate proposals of a

single underlying object.

To compare two bounding boxes, we use the usual intersection-over-

union (IoU) metric. We de�ne the distance matrix J ∈ R=×= to be

�8 9 = 1 − IoU(18 , 1 9) (3.3)

Chapter 3. Counting in VQA 29

G J G̃

� =

Figure 3.3: Removal of intra-object edges by masking the edges of the attention matrix G with

the distance matrix J . The black vertices now form a graph without self-loops. The self-loops

need to be added back in later.

G̃
′

s I

scale

with

= ≡

Figure 3.4: Removal of duplicate inter-object edges by computing a scaling factor for each vertex

and scaling G̃
′

accordingly. G̃
′

is G̃ with self-loops already added back in. The scaling factor

for one vertex is computed by counting how many vertices have outgoing edges to the same

set of vertices; all edges of the two proposals on the right are scaled by 0.5. This can be seen

as averaging proposals within each object and is equivalent to removing duplicate proposals

altogether under a sum.

J can also be interpreted as an adjacency matrix. It represents a graph

that has edges everywhere except when the two bounding boxes that

an edge connects would overlap.

Intra-object edges are removed by elementwise multiplying (�) the

distance matrix with the attention matrix (Figure 3.3).

G̃ = 51(G) � 52(J) (3.4)

G̃ no longer has self-loops, so we need to add them back in at a later

point to still satisfy |� | = |+ |2. Notice that we start making use of the

activation functions mentioned earlier to handle intermediate values

in the interval (0, 1) for both G and J . They regulate the in�uence of

attention weights that are not close to 0 or 1 and the in�uence of partial

overlaps.

Inter-object edges

Second, we eliminate inter-object edges between duplicate proposals of

di�erent underlying objects.

The main idea (depicted in Figure 3.4) is to count the number of proposals

associated to each individual object, then scale down the weight of their

associated edges by that number. If there are two proposals of a single

object, the edges involving those proposals should be scaled by 0.5.

30 3.4. Model

In essence, this averages over the proposals within each underlying

object because we only use the sum over the edge weights to compute

the count at the end. Conceptually, this reduces multiple proposals of

an object down to one as desired. Since we do not know how many

proposals belong to an object, we have to estimate this. We do this by

using the fact that proposals of the same object are similar.

Keep in mind that G̃ has no self-loops nor edges between proposals of

the same object. As a consequence, two nonzero rows in G̃ are the same

if and only if the proposals are the same. If the two rows di�er in at

least one entry, then one proposal overlaps a proposal that the other

proposal does not overlap, so they must be di�erent proposals. This

means for comparing rows, we need a similarity function that satis�es

the criteria of taking the value 1 when they di�er in no places and 0

if they di�er in at least one place. We de�ne a di�erentiable similarity

between proposals 8 and 9 as

Sim8 9 = 53(1 − |08 − 0 9 |)
∏
:

53(1 − |-8: − - 9: |) (3.5)

where ^ = 54(G) � 55(J) is the same as G̃ except with di�erent acti-

vation functions. The

∏
term compares the rows of proposals 8 and 9 .

Using this term instead of 54(1 − �8 9) was more robust to inaccurate

bounding boxes in initial experiments.

Note that the 53(1 − |08 − 0 9 |) term handles the edge case when there is

only one proposal to count. Since^ does not have self-loops, ^ contains

only zeros in that case, which causes the row corresponding to 08 = 1

to be incorrectly similar to the rows where 0 9≠8 = 0. By comparing the

attention weights through that term as well, this issue is avoided.

Now that we can check how similar two proposals are, we count the

number of times any row is the same as any other row and compute a

scaling factor B8 for each vertex 8 .

B8 = 1/
∑
9

Sim8 9 (3.6)

The time complexity of computing s = [B1, . . . , B=]T is Θ(=3) as there

are =2 pairs of rows and Θ(=) operations to compute the similarity of

any pair of rows.

Since these scaling factors apply to each vertex, we have to expand s

into a matrix using the outer product in order to scale both incoming

Chapter 3. Counting in VQA 31

and outgoing edges of each vertex. We can also add self-loops back in,

which need to be scaled by s as well. Then, the count matrix I is

I = G̃ � ssT + diag(s � 51(a � a)) (3.7)

where diag(·) expands a vector into a diagonal matrix with the vector

on the diagonal.

The scaling of self-loops involves a non-obvious detail. Recall that

the diagonal that was removed when going from G to G̃ contains the

entries 51(a � a). Notice however that we are scaling this diagonal by s

and not s � s. This is because the number of inter-object edges scales

quadratically with respect to the number of proposals per object, but

the number of self-loops only scales linearly.

3.4.4 Output

Under a sum, I is now equivalent to a complete graph with self-loops

that involves all relevant objects instead of relevant proposals as origi-

nally desired.

To turn I into a count 2 , we set |� | = ∑
8, 9 �8 9 as mentioned and

2 = |+ | =
√
|� | (3.8)

We veri�ed experimentally that when our extreme case assumptions

hold, 2 is always an integer and equal to the correct count, regardless of

the number of duplicate object proposals.

To avoid issues with scale when the number of objects is large, we turn

this single feature into several classes, one for each possible number.

Since we only used the object proposals with the largest = weights,

the predicted count 2 can be at most =. We de�ne the output o =

[>0, >1, . . . , >=]T to be

>8 = max(0, 1 − |2 − 8 |) (3.9)

This results in a vector that is 1 at the index of the count and 0 ev-

erywhere else when 2 is exactly an integer, and a linear interpolation

between the two corresponding one-hot vectors when the count falls

in-between two integers.

3.4.5 Output con�dence

Finally, we might consider a prediction made from values of a and J

that are either close to 0 or close to 1 to be more reliable – we explicitly

32 3.5. Experiments

handle these after all – than when many values are close to 0.5. To

incorporate this idea, we scale o by a con�dence value in the interval

[0, 1].

We de�ne ?a and ?J to be the average distances to 0.5. The choice

of 0.5 is not important, because the module can learn to change it by

changing where 56(G) = 0.5 and 57(G) = 0.5.

?a =
1

=

∑
8

|56(08) − 0.5| (3.10)

?J =
1

=2

∑
8, 9

|57(�8 9) − 0.5| (3.11)

Then, the output of the module with con�dence scaling is

õ = 58(?a + ?J) · o (3.12)

In summary, we only used di�erentiable operations to deduplicate object

proposals and obtain a feature vector that represents the predicted count.

This allows easy integration into any model with soft attention, enabling

a model to count from an attention map. Each step that we applied is

either permutation-equivariant or permutation-invariant, which makes

our whole model permutation-invariant.

3.5 Experiments

We provide the source code to reproduce our experiments at https:

//github.com/Cyanogenoid/vqa-counting.

3.5.1 Toy task

First, we design a simple toy task to evaluate counting ability. This

dataset is intended to only evaluate the performance of counting; thus,

we skip any processing steps that are not directly related such as the

processing of an input image. Samples from this dataset are given in

Figure 3.5.

The classi�cation task is to predict an integer count 2̂ of true objects,

uniformly drawn from 0 to 10 inclusive, from a set of bounding boxes

and the associated attention weights. 10 square bounding boxes with

side length ; ∈ (0, 1] are placed in a square image with unit side length.

The x and y coordinates of their top left corners are uniformly drawn

from* (0, 1−;) so that the boxes do not extend beyond the image border.

; is used to control the overlapping of bounding boxes: a larger ; leads

to the �xed number of objects to be more tightly packed, increasing the

chance of overlaps. 2̂ number of these boxes are randomly chosen to be

https://github.com/Cyanogenoid/vqa-counting
https://github.com/Cyanogenoid/vqa-counting

Chapter 3. Counting in VQA 33

l=
0.

05

Ground truth: 5 Data

l=
0.

1

Ground truth: 7 Data

l=
0.

2

Ground truth: 7 Data

l=
0.

3

Ground truth: 4 Data

l=
0.

4

Ground truth: 6 Data

l=
0.

5

Ground truth: 3 Data

q = 0.0

l=
0.

05

Ground truth: 8 Data

l=
0.

1

Ground truth: 6 Data

l=
0.

2

Ground truth: 4 Data

l=
0.

3

Ground truth: 5 Data

l=
0.

4

Ground truth: 4 Data

l=
0.

5

Ground truth: 2 Data

q = 0.5

Figure 3.5: Example toy dataset data for varying bounding box side lengths ; and noise @. The

ground truth column shows bounding boxes of randomly placed true objects (blue) and of

irrelevant objects (red). The data column visualises the samples that are actually used as input (dark

blues represent weights close to 1, dark reds represent weights close to 0, lighter colours represent

weights closer to 0.5). The weight of the 8th bounding box 18 is de�ned as 08 = (1 − @) score + @I
where the score is the maximum overlap of 18 with any true bounding box or 0 if there are no

true bounding boxes and I is drawn from* (0, 1). Note how this turns red bounding boxes that

overlap a lot with a blue bounding box in the ground truth column into a blue bounding box in

the data column, which simulates the duplicate proposal that we have to deal with. Best viewed

in colour.

34 3.5. Experiments

0.00 0.25 0.50 0.75 1.00
l

0.00

0.25

0.50

0.75

1.00
q = 0.0

0.00 0.25 0.50 0.75 1.00
l

0.00

0.25

0.50

0.75

1.00
q = 0.5

0.00 0.25 0.50 0.75 1.00
q

0.00

0.25

0.50

0.75

1.00
l = 1e−06

0.00 0.25 0.50 0.75 1.00
q

0.00

0.25

0.50

0.75

1.00
l = 0.5

Counting module Baseline

Figure 3.6: Accuracies on the toy task as side length ; and noise @ are varied in 0.01 step sizes.

Our counting module is in blue, the baseline is in orange.

true bounding boxes. The score of a bounding box is the maximum IoU

overlap of it with any true bounding box. Then, the attention weight is

a linear interpolation between the score and a noise value drawn from

* (0, 1), with @ ∈ [0, 1] controlling this trade-o�. @ is the attention noise

parameter: when @ is 0, there is no noise and when @ is 1, there is no

signal. Increasing @ also indirectly simulates imprecise placements of

bounding boxes in real datasets.

We compare the counting module against a simple baseline that simply

sums the attention weights and turns the sum into a feature vector with

Equation 3.9. Both models are followed by a linear projection to the

classes 0 to 10 inclusive and a softmax activation. They are trained with

cross-entropy loss for 1000 iterations using Adam [57] with a learning

rate of 0.01 and a batch size of 1024.

Results

The results of varying ; while keeping @ �xed at various values and vice

versa are shown in Figure 3.6. Regardless of ; and@, the counting module

performs better than the baseline in most cases, often signi�cantly so.

Particularly when the noise is low, the module can deal with high

values for ; very successfully, showing that it accomplishes the goal of

increased robustness to overlapping proposals. The module also handles

moderate noise levels decently as long as the overlaps are limited. The

performance when both ; and @ are high is closely matched by the

baseline, likely due to the high di�culty of those parametrisations

leaving little information to extract in the �rst place.

We can also look at the shape of the activation functions themselves,

shown in Figure 3.7 (full version: Figure 3.8 and Figure 3.9), to under-

stand how the behaviour changes with varying dataset parameters. For

simplicity, we limit our description to the two easiest-to-interpret func-

tions in Figure 3.7: 51 for the attention weights and 52 for the bounding

box distances.

Chapter 3. Counting in VQA 35

0 0.25 0.5 0.75 1
x

0.00

0.25

0.50

0.75

1.00

f(
x)

f1, q = 0.5

0 0.25 0.5 0.75 1
x

f2, q = 0.5

0.00

0.25

0.50

0.75

1.00
l

0 0.25 0.5 0.75 1
x

0.00

0.25

0.50

0.75

1.00

f(
x)

f1, l = 0.5

0 0.25 0.5 0.75 1
x

f2, l = 0.5

0.00

0.25

0.50

0.75

1.00
q

Figure 3.7: Shapes of trained activation functions 51 (attention weights) and 52 (bounding box

distances) for varying bounding box side lengths (left) or the noise (right) in the dataset, varied in

0.01 step sizes. Best viewed in colour.

When increasing the side length, the height of the “step” in 51 decreases

to compensate for the generally greater degree of overlapping bounding

boxes. A similar e�ect is seen with 52: it varies over requiring a high

pairwise distance when ; is low – when partial overlaps are most likely

spurious – and judging small distances enough for proposals to be con-

sidered di�erent when ; is high. At the highest values for ; , there is little

signal in the overlaps left since everything overlaps with everything,

which explains why 52 returns to its default linear initialisation for those

parameters.

When varying the amount of noise, without noise 51 resembles a step

function where the step starts close to G = 1 and takes a value of close

to 1 after the step. Since a true proposal will always have a weight of 1

when there is no noise, anything below this can be safely zeroed out.

With increasing noise, this step moves away from 1 for both G and 51(G),
capturing the uncertainty when a bounding box belongs to a true object.

With lower @, 52 considers a pair of proposals to be distinct for lower

distances, whereas with higher @, 52 follows a more sigmoidal shape.

This can be explained by the model taking the increased uncertainty of

the precise bounding box placements into account by requiring higher

distances for proposals to be considered completely di�erent.

3.5.2 VQA

VQA v2 [37] is the updated version of VQA v1 [6] where greater care

has been taken to reduce dataset biases through balanced pairs: for

each question, a pair of images is identi�ed where the answer to that

question di�ers. The standard accuracy metric on this dataset accounts

for disagreements in human answers by averaging min(1
3
agreeing, 1)

over all 10-choose-9 subsets of human answers, where agreeing is the

number of human answers that agree with the given answer. This can

be shown to be equal to min(0.3 agreeing, 1) without averaging.

36 3.5. Experiments

0 0.25 0.5 0.75 1
x

0.00

0.25

0.50

0.75

1.00

f(
x)

f1, q = 0.5

0 0.25 0.5 0.75 1
x

f2, q = 0.5

0 0.25 0.5 0.75 1
x

f3, q = 0.5

0 0.25 0.5 0.75 1
x

f4, q = 0.5

0 0.25 0.5 0.75 1
x

0.00

0.25

0.50

0.75

1.00

f(
x)

f5, q = 0.5

0 0.25 0.5 0.75 1
x

f6, q = 0.5

0 0.25 0.5 0.75 1
x

f7, q = 0.5

0 0.25 0.5 0.75 1
x

f8, q = 0.5

0.00

0.25

0.50

0.75

1.00
l

Figure 3.8: Shape of activation functions as ; is varied for @ = 0.5 on the toy dataset. Each line

shows the shape of the activation function when ; is set to the value associated to its colour. Best

viewed in colour.

0 0.25 0.5 0.75 1
x

0.00

0.25

0.50

0.75

1.00

f(
x)

f1, l = 0.5

0 0.25 0.5 0.75 1
x

f2, l = 0.5

0 0.25 0.5 0.75 1
x

f3, l = 0.5

0 0.25 0.5 0.75 1
x

f4, l = 0.5

0 0.25 0.5 0.75 1
x

0.00

0.25

0.50

0.75

1.00

f(
x)

f5, l = 0.5

0 0.25 0.5 0.75 1
x

f6, l = 0.5

0 0.25 0.5 0.75 1
x

f7, l = 0.5

0 0.25 0.5 0.75 1
x

f8, l = 0.5

0.00

0.25

0.50

0.75

1.00
q

Figure 3.9: Shape of activation functions as @ is varied for ; = 0.5 on the toy dataset. Each line

shows the shape of the activation function when @ is set to the value associated to its colour. Best

viewed in colour.

Chapter 3. Counting in VQA 37

Aside: Simplifying the evaluation metric

We managed to simplify the o�cial metric of averaging over the

10-choose-9 subsets as follows.

There are two cases for the one answer to be discarded:

1. the discarded answer is not the predicted answer

=⇒ accuracy stays the same

2. the discarded answer is the predicted answer

=⇒ we have to subtract 1 from the number of agreeing

answers.

We use # to denote the number of human answers agreeing with

the prediction. There are 10−# of case 1 and # of case 2, therefore

the accuracy is:

0.1 ·
(
(10 − #)min

(
#

3
, 1

)
+ # min

(
− 1
3

, 1

))
(3.13)

We know that when # = 0, the accuracy is 0, and when # ≥ 4,
the accuracy is 1. In the remaining cases 1 ≤ # ≤ 3, we know

that
#−1
3

< #

3
≤ 1, so all the mins can be removed. This allows

us to move the # outside:

0.1 · 1
3
· # ((10 − #) + (# − 1)) (3.14)

which simpli�es to 0.3#. Lastly, we can combine all the cases

together to get min(0.3#, 1) as accuracy metric.

Model Our baseline model is based on the work of Kazemi et al. [53],

which outperformed most previous VQA models on the VQA v1 dataset

with a simple baseline architecture. We adapt the model to the VQA

v2 dataset and make various tweaks that improve validation accuracy

slightly, which we describe in full in Section A.1. The architecture is

illustrated in Figure 3.10.

We have not performed any tuning of this baseline to maximise the

performance di�erence between it and the baseline with counting mod-

ule. To augment this model with the counting module, we extract the

attention weights of the �rst attention glimpse (there are two in the

baseline) before softmax normalisation, and feed them into the counting

module after applying a logistic function. Since object proposal features

from Anderson et al. [4] vary from 10 to 100 per image, a natural choice

for the number of top-= proposals to use is 10. The output of the module

38 3.5. Experiments

f

bounding boxes only

Image R-CNN L2 norm

Question Embedding GRU

� w

softmax

∑

� + BN w softmax

Count

BN

ReLU

w

w

w

w

w

Figure 3.10: Schematic view of a model using our counting module. The modi�cations made to

the baseline model when including the counting module are marked in red. Blue blocks mark

modules with trainable parameters, grey blocks mark modules without trainable parameters.

White w○ mark linear layers, either linear projections or convolutions with a spatial size of 1

depending on the context. Dropout with drop probability 0.5 is applied before the GRU and every

w○, except before the w○ after the counting module. � stands for the fusion function we de�ne

in Section A.1, BN stands for batch normalisation, f stands for a logistic, and Embedding is a

word embedding that has been fed through a tanh function. The two glimpses of the attention

mechanism are represented with the two lines exiting the w○. Note that one of the two glimpses

is shared with the counting module.

is linearly projected into the same space as the hidden layer of the clas-

si�er, followed by ReLU activation, batch normalisation, and addition

with the features in the hidden layer.

Results Table 3.1 shows the results on the o�cial VQA v2 leader board.

The baseline with our module has a signi�cantly higher accuracy on

number questions without compromising accuracy on other categories

compared to the baseline result. Despite our single-model baseline

being substantially worse than the state-of-the-art, by simply adding

the counting module we outperform even the 8-model ensemble in Zhou

et al. [117] on the number category. We expect further improvements in

number accuracy when incorporating their techniques to improve the

quality of attention weights, especially since the current state-of-the-art

models su�er from the problems with counting that we mention in

Section 3.3. Some qualitative examples of inputs and activations within

the counting module are shown in Figure 3.11.

Since the writing of this chapter, further VQA challenges have been

run. The winners of the 2018 challenge were Kim et al. [55], who used

our counting model to improve the counting results in their model.

They achieved a 54.04% accuracy on the number category of the VQA

v2 test set, which is a 2.65% improvement over our results. Without

our counting module, they obtained 50.66% accuracy in the number

category, so a signi�cant part of their improved number results are

Chapter 3. Counting in VQA 39

Table 3.1: Results on VQA v2 of the top models along with our results. Entries marked with (Ens.)

are ensembles of models. At the time of writing, our model with the counting module places

third among all entries. All models listed here use object proposal features and are trained on

the training and validation sets. The top-performing ensemble models use additional pre-trained

word embeddings, which we do not use.

VQA v2 test-dev VQA v2 test

Model Yes/No Number Other All Yes/No Number Other All

Teney et al. [97] 81.82 44.21 56.05 65.32 82.20 43.90 56.26 65.67

Teney et al. [97] (Ens.) 86.08 48.99 60.80 69.87 86.60 48.64 61.15 70.34

Zhou et al. [117] 84.27 49.56 59.89 68.76 – – – –

Zhou et al. [117] (Ens.) – – – – 86.65 51.13 61.75 70.92

Baseline 82.98 46.88 58.99 67.50 83.21 46.60 59.20 67.78

+ counting 83.14 51.62 58.97 68.09 83.56 51.39 59.11 68.41

Table 3.2: Results on the VQA v2 validation set with models trained only on the training set.

Reported are the mean accuracies and sample standard deviations (±) over 4 random initialisations.

VQA accuracy Balanced pair accuracy

Model Number Count All Number Count All

Baseline 44.83±0.2 51.69±0.2 64.80±0.0 17.34±0.2 20.02±0.2 36.44±0.1

+ NMS 44.60±0.1 51.41±0.1 64.80±0.1 17.06±0.1 19.72±0.1 36.44±0.2

+ counting 49.36±0.1 57.03±0.0 65.42±0.1 23.10±0.2 26.63±0.2 37.19±0.1

due to our model. In other words, they independently con�rmed that

a better attention model (which they developed) leads to even better

counting results.

We also evaluate our models on the validation set of VQA v2, shown in

Table 3.2. This allows us to consider only the counting questions within

number questions, since number questions include questions such as

"what time is it?" as well. We treat any question starting with the words

"how many" as a counting question. As we expect, the bene�t of using

the counting module on the counting question subset is higher than on

number questions in general. Additionally, we try an approach where

we simply replace the counting module with NMS, using the average

of the attention glimpses as scoring, and one-hot encoding the number

of proposals left. The NMS-based approach, using an IoU threshold

of 0.5 and no score thresholding based on validation set performance,

does not improve on the baseline, which suggests that the piecewise

gradient of NMS is a major problem for learning to count in VQA and

that conversely, there is a substantial bene�t to being able to di�erentiate

through the counting module.

Additionally, we can evaluate the accuracy over balanced pairs as pro-

posed by Teney et al. [97]: the ratio of balanced pairs on which the VQA

accuracy for both questions is 1.0. This is a much more di�cult metric,

since it requires the model to �nd the subtle details between images

40 3.5. Experiments

How many birds?

2 = 1.94

Predicted = 2

Ground truth = 2

G

J

I

How many athletes are there?

2 = 5.04

Predicted = 5

Ground truth = 5

G

J

I

How many people are visible?

2 = 0.99

Predicted = 1

Ground truth = 1

G

J

I

How many cows?

2 = 4.85

Predicted = 5

Ground truth = 4

G

J

I

Figure 3.11: Selection of validation images with overlaid bounding boxes, values of the attention

matrix G, distance matrix J , and the resulting count matrix I . White entries represent values

close to 1, black entries represent values close to 0. The count 2 is the usual square root of the

sum over the elements of I . Notice how particularly in the third example, G clearly contains

more rows/columns with high activations than there are actual objects (a sign of overlapping

bounding boxes) and the counting module successfully removes intra- and inter-object edges to

arrive at the correct prediction regardless. The prediction is not necessarily – though often is –

the rounded value of 2 .

Chapter 3. Counting in VQA 41

0 0.25 0.5 0.75 1
x

0.00

0.25

0.50

0.75

1.00

f(
x)

f1

0 0.25 0.5 0.75 1
x

f2

0 0.25 0.5 0.75 1
x

f3

0 0.25 0.5 0.75 1
x

f4

0 0.25 0.5 0.75 1
x

0.00

0.25

0.50

0.75

1.00

f(
x)

f5

0 0.25 0.5 0.75 1
x

f6

0 0.25 0.5 0.75 1
x

f7

0 0.25 0.5 0.75 1
x

f8

Figure 3.12: Shape of activation functions for a model trained on the train and validation sets of

VQA v2 (thick black), compared against the shapes when parametrising the toy dataset with @

around 0.4 (green), 0.7 (orange), or 1.0 (red) with �xed ; = 0.2. Best viewed in colour.

instead of being able to rely on question biases in the dataset. First,

notice how all balanced pair accuracies are greatly reduced compared

to their respective VQA accuracy. More importantly, the absolute accu-

racy improvement of the counting module is still fully present with the

more challenging metric, which is further evidence that the module can

properly count rather than simply �tting better to dataset biases.

When looking at the activation functions of the trained model, shown

in Figure 3.12, we �nd that some characteristics of them are shared

with high-noise parametrisations of the toy dataset. This suggests that

the current attention mechanisms and object proposal network are still

very inaccurate, which explains the perhaps small-seeming increase in

counting performance. This provides further evidence that the balanced

pair accuracy is maybe a more re�ective measure of how well current

VQA models perform than the overall VQA accuracies of over 70% of

the current top models.

3.6 Conclusion

After understanding why VQA models struggle to count, we designed

a counting module that alleviates this problem through di�erentiable

bounding box deduplication. The module can readily be used alongside

any future improvements in VQA models, as long as they still use soft

attention as all current top models on VQA v2 do. It has uses outside of

VQA as well: for many counting tasks, it can allow an object-proposal-

based approach to work without ground-truth objects available as long

42 3.6. Conclusion

as there is a – possibly learned – per-proposal scoring (for example

using a classi�cation score) and a notion of how dissimilar a pair of

proposals are. Since each step in the module has a clear purpose and

interpretation, the learned weights of the activation functions are also

interpretable. The design of the counting module is an example showing

how by encoding inductive biases into a deep learning model, challeng-

ing problems such as counting of arbitrary objects can be approached

when only relatively little supervisory information is available.

For future research, it should be kept in mind that VQA v2 requires a

versatile skill set that current models do not have. To make progress on

this dataset, we advocate focusing on understanding of what the current

shortcomings of models are and �nding ways to mitigate them.

43

Chapter 4

Set encoder: Permutation-
optimisation

After having motivated the usefulness of sets through the VQA bench-

mark task, we move on to developing a method for extracting informa-

tion from sets in a more general setting. Based on the idea that lists are

easier to work with than sets, we aim to let the model learn how to turn

a set into a list.

These contributions have been published as [115] in the International

Conference on Learning Representations (ICLR) 2019.

4.1 Introduction

Consider a task where each input sample is a set of feature vectors

with each feature vector describing an object in an image (for example:

{person, table, cat}). Because there is no a priori ordering of these

objects, it is important that the model is invariant to the order that the

elements appear in the set. However, this puts restrictions on what can

be learned e�ciently. As we covered in Section 2.3, the typical approach

is to compose elementwise operations with permutation-invariant re-

duction operations, such as summing [110] or taking the maximum [83]

over the whole set. Since the reduction operator compresses a set of

any size down to a single descriptor, this can be a signi�cant bottleneck

in what information about the set can be represented e�ciently.

We take an alternative approach based on an idea explored in Vinyals et

al. [100], where they �nd that some permutations of sets allow for easier

learning on a task than others. They do this by ordering the set elements

in some predetermined way and feeding the resulting sequence into a

recurrent neural network. For instance, it makes sense that if the task

is to output the top-n numbers from a set of numbers, it is useful if

the input is already sorted in descending order before being fed into

44 4.1. Model

an RNN. This approach leverages the representational capabilities of

traditional sequential models such as LSTMs, but requires some prior

knowledge of what order might be useful.

Our idea is to learn such a permutation purely from data without re-

quiring a priori knowledge (Section 4.2). The key aspect is to turn a

set into a sequence in a way that is both permutation-invariant, as

well as di�erentiable so that it is learnable. Our main contribution is a

Permutation-optimisation (PO) module that satis�es these requirements:

it optimises a permutation in the forward pass of a neural network us-

ing pairwise comparisons. By feeding the resulting sequence into a

traditional model such as an LSTM, we can learn a �exible, permutation-

invariant representation of the set while avoiding the bottleneck that

a simple reduction operator would introduce. Techniques used in our

model may also be applicable to other set problems where permutation-

invariance is desired, building on the literature of approaches to dealing

with permutation-invariance (Section 4.3).

In four di�erent experiments, we show improvements over existing

methods (Section 4.4). The former two tasks measure the ability to learn

a particular permutation as target: number sorting and image mosaics.

We achieve state-of-the-art performance with our model, which shows

that our method is suitable for representing permutations in general.

The latter two tasks test whether a model can learn to solve a task that

requires it to come up with a suitable permutation implicitly: classi�ca-

tion from image mosaics and visual question answering. We provide no

supervision of what the permutation should be; the model has to learn

by itself what permutation is most useful for the task at hand. Here, our

model also beats the existing models and we improve the performance of

a state-of-the-art model in visual question answering (VQA) with it. This

shows that our PO module is able to learn good permutation-invariant

representations of sets using our approach.

4.2 Permutation-optimisation module

We will now describe a di�erentiable, and thus learnable model to turn

an unordered set {x8}# with feature vectors as elements into an ordered

sequence of these feature vectors. An overview of the algorithm is

shown in Figure 4.1 and pseudo-code is shown in Algorithm 4.1. The

input set is represented as a matrix ^ = [x1, . . . , x#]T with the feature

vectors x8 as rows in some arbitrary order. Note that this representation

of sets is transposed compared to Chapter 2 (R=×3 instead of R3×=) to

ease the exposition in this chapter. In the algorithm, it is important to

not rely on the arbitrary order so that ^ is correctly treated as a set. The

goal is then to learn a permutation matrix V such that when permuting

Chapter 4. Permutation-optimisation 45

1

3

2

1

3

2

1 3 2

< <

> >

> <

2 (V)

− m2 (V)
mV

function to measure cost

of permutation with

improve permutation

by minimising cost:

V (0) V (1) V ())

·
1

3

2

^

=

1
2
3
_

^ I

�
(learnable)

Figure 4.1: Overview of Permutation-optimisation module. In the ordering cost I , elements

of ^ are compared to each other (blue represents a negative value, red represents a positive

value). Gradients are applied to unnormalised permutations Ṽ
(C)

, which are normalised to proper

permutations V (C) .

Algorithm 4.1 Forward pass of permutation-optimisation algorithm

1: Input: ^ ∈ R#×" with x8 as rows in arbitrary order

2: Learnable parameters: weights that parametrise � , step size [

3:

4: �8 9 ← normed(� (x8 , x 9)) ⊲ ordering costs (Equation 4.15)

5: initialise Ṽ ⊲ uniform or linear assignment init (Equation 4.11)

6: for t← 1,) do
7: V ← ((Ṽ) ⊲ normalise assignment (Equation 4.8

8: M ← m2 (V)/mV ⊲ compute gradient of assignment (Equation 4.9)

9: Ṽ ← Ṽ − [M ⊲ gradient descent step on assignment (Equation 4.12)

10: end for
11: V ← ((Ṽ)
12: _ ← V^ ⊲ permute rows of ^ to obtain output _

the rows of the input through _ = V^ , the output is ordered correctly

according to the task at hand. When an entry %8: takes the value 1, it

can be understood as assigning the 8th element to the :th position in

the output.

Our main idea is to �rst relate pairs of elements through an ordering

cost, parametrised with a neural network. This pairwise cost tells us

whether an element 8 should preferably be placed before or after element

9 in the output sequence. Using this, we can de�ne a total cost that

measures how good a given permutation is (Subsection 4.2.1). The

second idea is to optimise this total cost in each forward pass of the

module (Subsection 4.2.2). By minimising the total cost of a permutation,

we improve the quality of a permutation with respect to the current

ordering costs. Crucially, the ordering cost function – and thus also the

total cost function – is learned. In doing so, the module is able to learn

how to generate a permutation as is desired.

46 4.2. Model

In order for this to work, it is important that the optimisation process

itself is di�erentiable so that the ordering cost is learnable. Because

permutations are inherently discrete objects, a continuous relaxation

of permutations is necessary. For optimisation, we perform gradient

descent on the total cost for a �xed number of steps and unroll the iter-

ation, similar to how recurrent neural networks are unrolled to perform

backpropagation-through-time. Because the inner gradient (total cost

di�erentiated with respect to permutation) is itself di�erentiable with

respect to the ordering cost, the whole model is kept di�erentiable and

we can train it with a standard supervised learning loss.

Note that as long as the ordering cost is computed appropriately (Subsec-

tion 4.2.3), all operations used turn out to be permutation-equivariant or

invariant. Thus, we have a model that respects the symmetries of sets

while producing an output without those symmetries: a sequence. This

can be naturally extended to outputs where the target is not a sequence,

but grids and lattices (Subsection 4.2.4).

4.2.1 Total cost function

The total cost function measures the quality of a given permutation and

should be lower for better permutations. Because this is the function

that will be optimised, it is important to understand what it expresses

precisely.

The main ingredient for the total cost of a permutation is the pairwise

ordering cost (details in Subsection 4.2.3). By computing it for all pairs,

we obtain a cost matrix I where the entry �8 9 represents the ordering

cost between 8 and 9 : the cost of placing element 8 anywhere before

9 in the output sequence. An important constraint that we put on I

is that �8 9 = −� 98 . In other words, if one ordering of 8 and 9 is “good”

(negative cost), then the opposite ordering obtained by swapping them

is “bad” (positive cost). Additionally, this constraint means that �88 = 0.

This makes sure that two very similar feature vectors in the input will

be similarly ordered in the output because their pairwise cost goes to

0.

In this chapter we use a straightforward de�nition of the total cost

function: a sum of the ordering costs over all pairs of elements 8 and

9 . When considering the pair 8 and 9 , if the permutation maps 8 to be

before 9 in the output sequence, this cost is simply �8 9 . Vice versa, if

the permutation maps 8 to be after 9 in the output sequence, the cost

Chapter 4. Permutation-optimisation 47

has to be �ipped to � 98 . To express this idea, we de�ne the total cost

2 : R#×# ↦→ R of a permutation V as:

2 (V) =
∑
8 9

�8 9

∑
:

%8:

(∑
:′>:

% 9:′ −
∑
:′<:

% 9:′

)
(4.1)

This can be understood as follows: If the permutation assigns element

8 to position D (so %8D = 1) and element 9 to position E (so % 9 E = 1),

the sums over : and : ′ simplify to 1 when E > D and −1 when E < D;

permutation matrices are binary and only have one 1 in any row and

column, so all other terms in the sums are 0. That means that the term

for each 8 and 9 becomes �8 9 when E > D and −�8 9 = � 98 when E < D,

which matches what we described previously.

4.2.2 Optimisation problem

Now that we can compute the total cost of a permutation, we want to

optimise this cost with respect to a permutation. After including the

constraints to enforce that V is a valid permutation matrix, we obtain

the following optimisation problem:

minimize

V
2 (V)

subject to ∀8, : : %8: ∈ {0, 1},

∀8 :
∑
:

%8: = 1,
∑
:

%:8 = 1

(4.2)

Optimisation over V directly is di�cult due to the discrete and combina-

torial nature of permutations. To make optimisation feasible, a common

relaxation is to replace the constraint that %8: ∈ {0, 1} with %8: ∈ [0, 1]
[32]. With this change, the feasible set for V expands to the set of

doubly-stochastic matrices, known as the Birkho� or assignment poly-

tope. Rather than hard permutations, we now have soft assignments of

elements to positions, analogous to the latent assignments when �tting

a mixture of Gaussians model using Expectation-Maximisation.

Note that we do not need to change our total cost function after this

relaxation. Instead of discretely �ipping the sign of �8 9 depending on

whether element 8 comes before 9 or not, the sums over : and : ′ give us

a weight for each �8 9 that is based on how strongly 8 and 9 are assigned

to positions. This weight is positive when 8 is on average assigned to

earlier positions than 9 and negative vice versa.

In order to perform optimisation of the cost under our constraints, we

reparametrise V with the Sinkhorn operator (from Adams et al. [2] so

that the constraints are always satis�ed.

48 4.2. Model

We found this to lead to better solutions than projected gradient descent

in initial experiments. After �rst exponentiating all entries of a matrix,

(repeatedly normalises all rows, then all columns of the matrix to sum

to 1, which converges to a doubly-stochastic matrix in the limit.

V = ((Ṽ) (4.3)

This ensures that V is always approximately a doubly-stochastic ma-

trix. Ṽ can be thought of as the unnormalised permutation while V

is the normalised permutation. By changing our optimisation to min-

imise Ṽ instead of V directly, all constraints are always satis�ed and

we can simplify the optimisation problem to minṼ 2 (V) without any

constraints.

Aside: Sinkhorn operator

The Sinkhorn operator (as de�ned in Adams et al. [2] is:

TA (^)8 9 = -8 9/
∑
:

-8: (4.4)

T2 (^)8 9 = -8 9/
∑
:

-: 9 (4.5)

((0) (^) = exp(^) (4.6)

((;+1) (^) = T2
(
TA

(
((;) (^)

))
(4.7)

((^) = ((!) (^) (4.8)

TA normalises each row, T2 normalises each column of a square

matrix ^ to sum to one. This formulation is di�erent from the

normal Sinkhorn operator by Sinkhorn [93] by exponentiating

all entries �rst and running for a �xed number of steps ! in-

stead of for steps approaching in�nity. Mena et al. [70] include a

temperature parameter on the exponentiation, which acts analo-

gously to temperature in the softmax function. In this chapter,

we �x ! to 4.

It is now straightforward to optimise Ṽ with standard gradient descent.

First, we compute the gradient:

Chapter 4. Permutation-optimisation 49

m2 (V)
m%?@

= 2
∑
9

�? 9
©­«
∑
:′>@

% 9:′ −
∑
:′<@

% 9:′
ª®¬ (4.9)

m2 (V)
m%̃?@

=
mV

m%̃?@
· m2 (V)
mV

(4.10)

From Equation 4.9, it becomes clear that this gradient is itself di�eren-

tiable with respect to the ordering cost�8 9 , which allows it to be learned.

In practice, both m2 (V)/mṼ as well as m[m2 (V)/mṼ]/mI can be computed

with automatic di�erentiation. However, some implementations of au-

tomatic di�erentiation require the computation of 2 (V) which we do

not use. In this case, implementing m2 (V)/mṼ explicitly can be more

e�cient. Also notice that if we de�ne � 9@ =
∑
:′>@ % 9:′ −

∑
:′<@ % 9:′ ,

Equation 4.9 is just the matrix multiplication IH and is thus e�ciently

computable.

For the optimisation, V has to be initialised in a permutation-equivariant

way to preserve permutation-invariance of the algorithm. In this chapter,

we consider a uniform initialisation so that all %8: = 1/# (PO-U model,

left) and an initialisation that linearly assigns [70] each element to each

position (PO-LA model, right).

%̃
(0)
8:

= 0 or %̃
(0)
8:

= w:x8 (4.11)

where w: is a di�erent weight vector for each position : . Then, we

perform gradient descent for a �xed number of steps) . The iterative

update using the gradient and a (learnable) step size [converges to the

optimised permutation V ()) :

Ṽ
(C+1)

= Ṽ
(C) − [m2 (V

(C))
mV (C)

(4.12)

One peculiarity of this is that we update Ṽ with the gradient of the

normalised permutation V , not of the unnormalised permutation Ṽ

as normal. In other words, we do gradient descent on Ṽ but in Equa-

tion 4.10 we set m%DE/m%̃?@ = 1 when D = ?, E = @, and 0 everywhere

else. We found that this results in signi�cantly better permutations

experimentally; we believe that this is because mV/mṼ vanishes too

quickly from the Sinkhorn normalisation, which biases V away from

good permutation matrices wherein all entries are close to 0 and 1. We

justify this in more detail in Subsection 4.2.5.

The runtime of this algorithm is dominated by the computation of

gradients of 2 (V), which involves a matrix multiplication of two # × #

50 4.2. Model

matrices. In total, the time complexity of this algorithm is) times the

complexity of this matrix multiplication, which is Θ(# 3) in practice.

We found that typically, small values for) such as 4 are enough to get

good permutations.

4.2.3 Ordering cost function

The ordering cost �8 9 is used in the total cost and tells us what the

pairwise cost for placing 8 before 9 should be. The key property to

enforce is that the function � that produces the entries of I is anti-

symmetric (� (x8 , x 9) = −� (x 9 , x8)). A simple way to achieve this is to

de�ne � as:

� (x8 , x 9) = 5 (x8 , x 9) − 5 (x 9 , x8) (4.13)

We can then use a small neural network for 5 to obtain a learnable �

that is always anti-symmetric.

Lastly, I is normalised to have unit Frobenius norm. This results in

simply scaling the total cost obtained, but it also decouples the scale of

the outputs of � from the step size parameter [to make optimisation

more stable at inference time. I is then de�ned as:

�̃8 9 = � (x8 , x 9) (4.14)

�8 9 = �̃8 9/‖Ĩ ‖� (4.15)

4.2.4 Extending permutations to lattices

In some tasks, it may be natural to permute the set into a lattice structure

instead of a sequence. For example, if it is known that the set contains

parts of an image, it makes sense to arrange these parts back to an

image by using a regular grid. We can straightforwardly adapt our

model to this by considering each row and column of the target grid as

an individual permutation problem. The total cost of an assignment to a

grid is the sum of the total costs over all individual rows and columns of

the grid. The gradient of this new cost is then the sum of the gradients

of these individual problems. This results in a model that considers

both row-wise and column-wise pairwise relations when permuting

a set of inputs into a grid structure, and more generally, into a lattice

structure.

Chapter 4. Permutation-optimisation 51

4.2.5 Justi�cation for alternative update

We mentioned previously that we perform gradient descent with the

post-Sinkhorn gradients on the pre-Sinkhorn matrix. Here, we justify

why this is a reasonable thing to do.

First, the gradient of ((^) is:

m((^)
m^

=
m exp(^)
m^

mTA
(
exp(^)

)
m exp(^)

mT2
(
TA

(
exp(^)

))
mTA

(
exp(^)

) · · · (4.16)

mTA (^)DE
m-8 9

= 1D=8
1E=9

∑
: -D: − -DE
(∑: -D:)2

(4.17)

mT2 (^)DE
m-8 9

= 1E=9
1D=8

∑
: -:E − -DE
(∑: -:E)2

(4.18)

where 1 is the indicator function that returns 1 if the condition is true

and 0 otherwise.

We compared the entropy of the permutation matrices obtained with

and without using the “proper” gradient with m((Ṽ)/mṼ as term in it and

found that our version has a signi�cantly lower entropy. To understand

this, it is enough to focus on the �rst two terms in Equation 4.16, which

is essentially the gradient of a softmax function applied row-wise to

V .

Let x be a row in V and B8 be the 8th entry in the softmax function

applied to x . Then, the gradient is:

mB8

mG 9
= B8 (18=9 − B 9) (4.19)

Since this is a product of entries in a probability distribution, the gradient

vanishes quickly as we move towards a proper permutation matrix (all

entries very close to 0 or 1). By using our alternative update and thus

removing this term from our gradient, we can avoid the vanishing

gradient problem.

Gradient descent is not e�cient when the gradient vanishes towards

the optimum and the optimum – in our case a permutation matrix with

exact ones and zeros as entries – is in�nitely far away. Since we prefer

to use a small number of steps in our algorithm for e�ciency, we want

to reach a good solution as quickly as possible. This justi�es e�ectively

ignoring the step size that the gradient suggests and simply taking a step

in a similar direction as the gradient in order to be able to saturate the

Sinkhorn normalisation su�ciently, thus obtaining a doubly stochastic

matrix that is closer to a proper permutation matrix in the end.

52 4.3. Related work

4.2.6 Quadratic programming formulation

We can write our total cost function as a quadratic program in the stan-

dard xTWx form with linear constraints. (We leave out the constraints

here as they are not particularly interesting.) This connects our work

to the extensive quadratic programming literature.

First, we can de�ne U ∈ R#×# as:

$::′ =


−1 if : > : ′

0 if : = : ′

1 if : < : ′

(4.20)

and with it, W ∈ R# 2×# 2

as:

& (8:) (9:′) = �8 9$::′ (4.21)

Then we can write the cost function as:

2 (V) =
∑
8 9

�8 9

∑
::′

%8:% 9:′$::′ (4.22)

=
∑
8:

∑
9:′
%8: (�8 9$::′)% 9:′ (4.23)

=
∑
(8:)

∑
(9:′)

% (8:)& (8:) (9:′)% (9:′) (4.24)

= pTWp (4.25)

where there is some bijection between a pair of indices (8, :) and the

index ; , and p is a �attened version of V with ?; = %8: . W is inde�nite

because the total cost can be negative: a uniform initialisation for V has

a cost of 0, better permutations have negative cost, worse permutations

have positive cost. Thus, the problem is non-convex and the problem is

possibly NP-hard. Also, since we have �attened V into p, the number of

optimisation variables is quadratic in the set size # . Even if this were

a convex quadratic program, methods such as OptNet [3] have cubic

time complexity in the number of optimisation variables, which makes

it $ (# 6) for our case.

4.3 Related work

The most relevant work to ours is the inspiring study by Mena et al. [70],

where they discuss the reparametrisation that we use and propose a

model that can also learn permutations implicitly in principle. Their

Chapter 4. Permutation-optimisation 53

model uses a simple elementwise linear map from each of the# elements

of the set to the # positions, normalised by the Sinkhorn operator.

This can be understood as classifying each element individually into

one of the # classes corresponding to positions, then normalising the

predictions so that each class only occurs once within this set. However,

processing the elements individually means that their model does not

take relations between elements into account properly; elements are

placed in absolute positions, not relative to other elements. Our model

di�ers from theirs by considering pairwise relations when creating the

permutation. By basing the cost function on pairwise comparisons,

it is able to order elements such that local relations in the output are

taken into account. We believe that this is important for learning from

permutations implicitly, because networks such as CNNs and RNNs rely

on local ordering more than absolute positioning of elements. It also

allows our model to process variable-sized sets, which their model is

not able to do.

Our work is closely related to the set function literature, where the

main constraint is invariance to ordering of the set. While it is always

possible to simply train using as many permutations of a set as possible,

using a model that is naturally permutation-invariant increases learn-

ing and generalisation capabilities through the correct inductive bias in

the model. There are some similarities with relation networks [88] in

considering all pairwise relations between elements as in our pairwise

ordering function. However, they sum over all non-linearly transformed

pairs, which can lead to the bottleneck we mention in Section 4.1. Mean-

while, by using an RNN on the output of our model, our approach can

encode a richer class of functions: it can still learn to simply sum the

inputs, but it can also learn more complex functions where the learned

order between elements is taken into account. The concurrent work

by Murphy et al. [75] discusses various approximations of averaging

the output of a neural network over all possible permutations, with

our method falling under their categorisation of a learned canonical

input ordering. Our model is also relevant to neural networks operating

on graphs such as graph convolutional networks [58]. Typically, a set

function is applied to the set of neighbours for each node, with which

the state of the node is updated. Our module combined with an RNN is

thus an alternative set function to perform this state update with.

Noroozi et al. [78] and Cruz et al. [25] show that it is possible to use

permutation learning for representation learning in a self-supervised

setting. The model in Cruz et al. [25] is very similar to Mena et al. [70],

including use of a Sinkhorn operator, but they perform signi�cantly

more processing on images with a large CNN (AlexNet) beforehand with

the main goal of learning good representations for that CNN. We instead

54 4.4. Experiments

focus on using the permuted set itself for representation learning in a

supervised setting.

We are not the �rst to explore the usefulness of using optimisation in

the forward pass of a neural network (for example, Stoyanov et al. [96],

Domke [28], and Belanger et al. [13]). However, we believe that we are

the �rst to show the potential of optimisation for processing sets because

– with an appropriate cost function – it is able to preserve permutation-

invariance. In OptNet [3], exact solutions to convex quadratic programs

are found in a di�erentiable way through various techniques. Unfortu-

nately, our quadratic program is non-convex, which makes �nding an

optimal solution possibly NP-hard [80]. We thus fall back to the simpler

approach of gradient descent on the reparametrised problem to obtain

a non-optimal, but reasonable solution.

Note that our work di�ers from learning to rank approaches such as

Burges et al. [17] and Severyn et al. [89], as there the end goal is the

permutation itself. This usually requires supervision on what the target

permutation should be, producing a permutation with hard assignments

at the end. We require our model to produce soft assignments so that it is

easily di�erentiable, since the main goal is not the permutation itself, but

processing it further to form a representation of the set being permuted.

This means that other approaches that produce hard assignments such

as Ptr-Net [101] are also unsuitable for implicitly learning permutations,

although using a variational approximation through Mena et al. [70] to

obtain a di�erentiable permutation with hard assignments is a promising

direction to explore for the future. Due to the lack of di�erentiability,

existing literature on solving minimum feedback arc set problems [20]

can not be easily used for set representation learning either.

4.4 Experiments

Throughout the text, we will refer to our model with uniform assignment

as PO-U, with linear assignment initialisation as PO-LA, and the model

from Mena et al. [70] as LinAssign. We perform a qualitative analysis

of what comparisons are learned in Section 4.5. Precise experimental

details can be found in Section A.2 and our implementation for all

experiments is available at https://github.com/Cyanogenoid/

perm-optim for full reproducibility.

An interesting aspect we observed throughout all experiments is how

the learned step size [changes during training. At the start of training,

it decreases from its initial value of 1, thus reducing the in�uence of the

permutation mechanism. Then, [starts rising again, usually ending up

at a value above 1 at the end of training. This can be explained by the

ordering cost being very inaccurate at the start of training, since it has

https://github.com/Cyanogenoid/perm-optim
https://github.com/Cyanogenoid/perm-optim

Chapter 4. Permutation-optimisation 55

0.3

0.8

0.7

0.1

{
}

0.1

0.3

0.7

0.8

[
]

MLP

�

MLP

...

MLP

PO

I

Figure 4.2: Network architecture for number sorting. The MLP in � computes 5 and is shared

across pairs of set elements. The PO block performs the optimisation with the given costs and

permutes the input set.

not been trained yet. Through training, the ordering cost improves and

it becomes more bene�cial for the in�uence of the PO module on the

permutation to increase.

4.4.1 Sorting numbers

We start with the toy task of turning a set of random unsorted numbers

into a sorted list. For this problem, we train with �xed-size sets of

numbers drawn uniformly from the interval [0, 1] and evaluate on

di�erent intervals to determine generalisation ability (for example:

[0, 1], [0, 1000], [1000, 1001]). We use the correctly ordered sequence as

training target and minimise the mean squared error. Following Mena et

al. [70], during evaluation we use the Hungarian algorithm for solving

a linear assignment problem with −V as the assignment costs. This

is done to obtain a permutation with hard assignments from our soft

permutation. We show our model architecture in Figure 4.2.

Results Our PO-U model is able to sort all sizes of sets that we tried –

5 to 1024 numbers – perfectly, including generalising to all the di�erent

evaluation intervals without any mistakes. This is in contrast to all

existing end-to-end learning-based approaches such as Mena et al. [70],

which starts to make mistakes on [0, 1] at 120 numbers and no longer

generalises to sets drawn from [1000, 1001] at 80 numbers. Vinyals

et al. [100] already starts making mistakes on 5 numbers. Our stark

improvement over existing results is evidence that the inductive biases

due to the learned pairwise comparisons in our model are suitable

for learning permutations, at least for this particular toy problem. In

Subsection 4.5.1, we investigate what it learns that allows it to generalise

this well.

56 4.4. Experiments

{
}

CNN

CNN

CNN

CNN

MLP

�

MLP

...

MLP

PO ResNet-18

Irow

I
col

Figure 4.3: Network architecture for image mosaic tasks. The small CNN and the MLP in � is

shared across set elements and pairs of set elements respectively. The PO block performs the

optimisation with the given row and column costs and permutes the input set. The ResNet-18

network at the end is only present in the implicit permutation setting.

Table 4.1: Mean squared error of image mosaic reconstruction for di�erent datasets and number of

tiles an image is split into. Lower is better. LinAssign* is the model by Mena et al. [70], LinAssign

is our reproduction of their model, PO-U and PO-LA are our models with uniform and linear

assignment initialisation respectively.

MNIST CIFAR10 ImageNet 64 × 64
Model 2 × 2 3 × 3 4 × 4 5 × 5 2 × 2 3 × 3 4 × 4 5 × 5 2 × 2 3 × 3 4 × 4 5 × 5

LinAssign* 0.00 0.00 0.26 0.18 – – – – 0.22 0.31 – –
LinAssign 0.00 0.00 0.33 0.08 0.37 0.49 1.34 1.12 0.60 1.10 1.33 1.44

PO-U 0.00 0.02 0.46 0.45 0.11 0.44 1.23 1.26 0.14 0.69 1.20 1.31
PO-LA 0.00 0.00 0.07 0.01 0.18 0.16 1.07 0.70 0.16 0.62 1.13 1.32

4.4.2 Re-assembling image mosaics

As second task, we consider a problem where the model is given images

that are split into = × = equal-size tiles and the goal is to re-arrange

this set of tiles back into the original image. We take these images

from either MNIST, CIFAR10, or a version of ImageNet with images

resized down to 64 × 64 pixels. For this task, we use the alternative

cost function described in Subsection 4.2.4 to arrange the tiles into a

grid rather than a sequence; this lets our model take relations within

rows and columns into account. Again, we minimise the mean squared

error to the correctly permuted image and use the Hungarian algorithm

during evaluation, matching the experimental setup in Mena et al. [70].

Due to the lack of reference implementation of their model for this

experiment, we use our own implementation of their model, which

we veri�ed to reproduce their MNIST results closely. Unlike them, we

decide to not arbitrarily upscale MNIST images to get improved results

for all models. We show our model architecture in Figure 4.3.

Chapter 4. Permutation-optimisation 57

Table 4.2: Accuracy of image mosaic reconstruction. Higher is better. A permutation is considered

correct if all tiles are placed correctly. Because of indistinguishable tiles at higher tile counts (for

example multiple completely blank tiles on MNIST) it becomes very unlikely to guess the correct

ground-truth matching at higher tile counts. LinAssign* results come from Mena et al. [70].

MNIST CIFAR10 ImageNet 64 × 64
Model 2 × 2 3 × 3 4 × 4 5 × 5 2 × 2 3 × 3 4 × 4 5 × 5 2 × 2 3 × 3 4 × 4 5 × 5

LinAssign* 100 72 3 0 – – – – 81 47 0 0
LinAssign 99.7 66.9 0.8 0.0 68.8 30.3 0.0 0.0 47.7 4.0 0.0 0.0

PO-U 100.0 65.9 0.2 0.0 86.2 34.4 0.0 0.0 85.9 19.2 0.1 0.0

PO-LA 99.9 73.1 1.8 0.0 87.3 66.0 0.6 0.3 84.2 28.6 0.1 0.0

Results The mean squared errors for the di�erent image datasets and

di�erent number of tiles an image is split into are shown in Table 4.1.

The corresponding accuracies when training a classi�er on these re-

constructions are shown in Table 4.2. First, notice that in essentially

all cases, our model with linear assignment initialisation (PO-LA) per-

forms best, often signi�cantly so. On the two more complex datasets

CIFAR10 and ImageNet, this is followed by our PO-U model, then the

LinAssign model. We analyse what types of comparisons PO-U learns

in Subsection 4.5.2.

On MNIST, LinAssign performs better than PO-U on higher tile counts

because images are always centred on the object of interest. That means

that many tiles only contain the background and end up completely

blank; these tiles can be more easily assigned to the borders of the image

by the LinAssign model than our PO-U model because the absolute

position is much more important than the relative positioning to other

tiles. This also points towards an issue for these cases in our cost

function: because two tiles that have the same contents are treated the

same by our model, it is unable to place one blank tile on one side of

the image and another blank tile on the opposite side, as this would

require treating the two tiles di�erently. This issue with backgrounds

is also present on CIFAR10 to a lesser extent: notice how for the 3 × 3
case, the error of PO-U is much closer to LinAssign on CIFAR10 than

on ImageNet, where PO-U is much better comparatively. This shows

that the PO-U model is more suitable for more complex images when

relative positioning matters more. PO-LA is able to combine the best of

both methods.

In Figure 4.4, Figure 4.5, and Figure 4.6, we show some example recon-

structions that have been learnt by our PO-U model. Starting from a

uniform assignment at the top, the �gures show reconstructions as a

permutation is being optimised. Generally, it is able to reconstruct most

images fairly well.

58 4.4. Experiments

Figure 4.4: Example reconstructions of PO-U as they are being optimised on MNIST 3 × 3 with

explicit supervision. These examples have not been cherry-picked.

Figure 4.5: Example reconstructions of PO-U as they are being optimised on CIFAR10 3 × 3 with

explicit supervision. These examples have not been cherry-picked.

Chapter 4. Permutation-optimisation 59

Figure 4.6: Example reconstructions of PO-U as they are being optimised on ImageNet 3 × 3 with

explicit supervision. These examples have not been cherry-picked.

4.4.3 Implicit permutations through classi�cation

We now turn to tasks where the goal is not producing the permutation

itself, but learning a suitable permutation for a di�erent task. For these

tasks, we do not provide explicit supervision on what the permuta-

tion should be; an appropriate permutation is learned implicitly while

learning to solve another task.

As the dataset, we use a straightforward modi�cation of the image

mosaic task. The image tiles are assigned to positions on a grid as

before, which are then concatenated into a full image. This image is

fed into a standard image classi�er (ResNet-18 [41]) which is trained

with the usual cross-entropy loss to classify the image. The idea is

that the network has to learn some permutation of the image tiles so

that the classi�er can classify it accurately. This is not necessarily the

permutation that restores the original image faithfully.

One issue with this set-up we observed is that with big tiles, it is easy

for a CNN to ignore the artefacts on the tile boundaries, which means

that simply permuting the tiles randomly gets to almost the same test

accuracy as using the original image. To prevent the network from

avoiding to solve the task, we �rst pre-train the CNN on the original

dataset without permuting the image tiles. Once it is fully trained,

we freeze the weights of this CNN and train only the permutation

mechanism.

Results We show the classi�cation results in Table 4.3 and the corre-

sponding MSE reconstruction losses in Table 4.4. Note that the models

60 4.4. Experiments

Table 4.3: Accuracy of classi�cation from implicitly-learned image reconstructions through

permutations. max shows the accuracy of the pre-trained model on the original images, min
shows the accuracy of the pre-trained model on images with randomly permuted tiles.

MNIST CIFAR10 ImageNet 64 × 64
Model 2 × 2 3 × 3 4 × 4 5 × 5 2 × 2 3 × 3 4 × 4 5 × 5 2 × 2 3 × 3 4 × 4 5 × 5

max 99.5 99.5 99.5 99.3 81.0 81.0 81.9 80.2 31.2 33.4 31.2 33.5
min 36.6 22.5 17.1 14.6 36.5 26.4 22.9 18.0 11.4 7.8 3.5 2.7

LinAssign 99.4 99.2 86.0 84.2 64.6 33.8 33.4 32.5 13.1 5.8 5.3 3.3

PO-U 99.3 98.7 67.9 69.2 70.8 41.6 33.3 29.7 24.6 12.1 7.3 5.1
PO-LA 99.3 99.4 93.3 89.8 71.6 40.7 34.2 32.3 23.4 10.9 6.3 4.4

Table 4.4: Mean squared error of implicitly-learned reconstruction. Lower is better.

MNIST CIFAR10 ImageNet 64 × 64
Model 2 × 2 3 × 3 4 × 4 5 × 5 2 × 2 3 × 3 4 × 4 5 × 5 2 × 2 3 × 3 4 × 4 5 × 5

max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
min 1.59 1.63 1.91 1.72 1.76 1.91 2.11 2.01 1.48 1.72 1.79 1.83

LinAssign 0.02 0.05 0.73 1.11 0.56 1.29 1.53 1.62 0.88 1.33 1.32 1.39
PO-U 0.02 0.15 1.38 1.24 0.33 1.03 1.44 1.34 0.44 1.16 1.28 1.47

PO-LA 0.01 0.03 0.50 0.93 0.28 1.00 1.47 1.55 0.41 1.15 1.41 1.43

are not trained to minimise MSE loss. Generally, a similar trend to the

image mosaic task with explicit supervision can be seen. Our PO-LA

model usually performs best, although for ImageNet PO-U is consis-

tently better. This is evidence that for more complex images, the bene�ts

of linear assignment decrease (and can actually detract from the task in

the case of ImageNet) and the importance of the optimisation process

in our model increases. With higher number of tiles on MNIST, even

though PO-U does not perform well, PO-LA is clearly superior to only

using LinAssign. This is again due to the fully black tiles not being able

to be sorted well by the cost function with uniform initialisation.

In Figure 4.7, Figure 4.8, and Figure 4.9, we show some example recon-

structions that have been learnt by our PO-U model on 3 × 3 versions

of the image datasets. Because the quality of implicit CIFAR10 and Ima-

geNet reconstructions are relatively poor, we also include Figure 4.10,

and Figure 4.11 on 2 × 2 versions. Starting from a uniform assignment

at the top, the �gures show reconstructions as a permutation is being

optimised. The reconstructions here are clearly noisier than before

due the supervision only being implicit. This is evidence that while

our method is superior to existing methods in terms of reconstruction

error and accuracy of the classi�cation, there is still plenty of room

for improvement to allow for better implicitly learned permutations.

Keep in mind that it is not necessary for the permutation to produce the

original image exactly, as long as the CNN can consistently recognise

Chapter 4. Permutation-optimisation 61

Figure 4.7: Example reconstructions of PO-U as they are being optimised on MNIST 3 × 3 with

implicit supervision. These examples have not been cherry-picked.

Figure 4.8: Example reconstructions of PO-U as they are being optimised on CIFAR10 3 × 3 with

implicit supervision. These examples have not been cherry-picked.

62 4.4. Experiments

Figure 4.9: Example reconstructions of PO-U as they are being optimised on ImageNet 3 × 3 with

implicit supervision. These examples have not been cherry-picked.

Figure 4.10: Example reconstructions of PO-U as they are being optimised on CIFAR10 2 × 2 with

implicit supervision. These examples have not been cherry-picked.

Chapter 4. Permutation-optimisation 63

Figure 4.11: Example reconstructions of PO-U as they are being optimised on ImageNet 2× 2 with

implicit supervision. These examples have not been cherry-picked.

what the permutation method has learned. Our models tend to naturally

learn reconstructions that are more similar to the original image than

the LinAssign model.

4.4.4 Visual question answering

As the last task, we consider the much more complex problem of visual

question answering (VQA): answering questions about images. We use

the VQA v2 dataset [6, 37], which in total contains around 1 million

questions about 200,000 images from MS-COCO with 6.5 million human-

provided answers available for training. We use bottom-up attention

features [4] as representation for objects in the image, which for each

image gives us a set (size varying from 10 to 100 per image) of bounding

boxes and the associated feature vector that encodes the contents of

the bounding box. These object proposals have no natural ordering a

priori.

We use the state-of-the-art BAN model [55] as baseline and perform a

straightforward modi�cation to it to incorporate our module (see Fig-

ure 4.12). For each element in the set of object proposals, we concatenate

the bounding box coordinates, features, and the attention value that the

baseline model generates. Our model learns to permute this set into

a sequence, which is fed into an LSTM. We take the last cell state of

the LSTM to be the representation of the set, which is fed back into the

baseline model. This is done for each of the eight attention glimpses

in the BAN model. We include another baseline model (BAN + LSTM)

64 4.5. Analysis of learned comparisons

Object proposals

Question

BAN

Attention glimpse Attention glimpse · · ·

· · ·� → PO LSTM

Figure 4.12: Network architecture for visual question answering task using BAN with 8 glimpses

(2 shown) as baseline. We add a shared PO-U module with an LSTM to process its output for each

glimpse. The outputs of the BAN attention and the LSTM are added into the hidden state of the

BAN network.

Table 4.5: Accuracy on VQA v2 validation set, mean of 10 runs. The sample standard deviation

over these runs is shown after the ± symbol. Overall includes the other three question categories.

Model Overall Yes/No Number Other

BAN 65.96 ± 0.16 83.34 ± 0.09 49.24 ± 0.56 57.17 ± 0.14

BAN + LSTM 66.06 ± 0.13 83.29 ± 0.13 49.64 ± 0.37 57.30 ± 0.13

BAN + PO-U 66.33 ± 0.09 83.50 ± 0.10 50.42 ± 0.46 57.48 ± 0.10

that skips the permutation learning, directly processing the set with the

LSTM.

Our results on the validation set of VQA v2 are shown in Table 4.5. We

improve on the overall performance of the state-of-the-art model by

0.37% – a signi�cant improvement for this dataset – with 0.27% of this

improvement coming from the learned permutation. This shows that

there is a substantial bene�t to learning an appropriate permutation

through our model in order to learn better set representations. Our

model signi�cantly improves on the number category, despite the in-

clusion of our counting module from Chapter 3 speci�cally targeted

at number questions in the baseline. This is evidence that the repre-

sentation learned through the permutation is non-trivial. Note that

the improvement through our model is not simply due to increased

model size and computation: Kim et al. [55] found that signi�cantly

increasing BAN model size, increasing computation time similar in scale

to including our model, does not yield any further gains.

4.5 Analysis of learned comparisons

4.5.1 Number sorting

First, we investigate what comparison function � is learned for the

number sorting task. We start with plotting the outputs of � for di�erent

Chapter 4. Permutation-optimisation 65

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
2

1

0

1

2

0 200 400 600 800 1000
0

200

400

600

800

1000 2000

1500

1000

500

0

500

1000

1500

2000

Figure 4.13: Outputs of � for di�erent pairs of numbers as input. Red indicates that the number

on the left should be ordered after the number at the top, blue indicates the opposite. Evaluation

intervals are [0, 1] (left) and [0, 1000] (right).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

4.0

3.5

3.0

2.5

2.0

0 200 400 600 800 1000
0

200

400

600

800

1000

2000

1500

1000

500

Figure 4.14: Outputs of 5 for di�erent pairs of numbers as input. Evaluation intervals are [0, 1]
(left) and [0, 1000] (right).

pairs of inputs in Figure 4.13. From this, we can see that it learns a

sensible comparison function where it outputs a negative number when

the �rst argument is lower than the second, and a positive number vice

versa.

The easiest way to achieve this is to learn 5 (G8 , G 9) = G8 , which results

in � (G8 , G 9) = G8 − G 9 . By plotting the outputs of the learned 5 in

Figure 4.14 we can see that something close to this has indeed been

learned. The learned 5 mostly depends on the second argument and

is a scaled and shifted version of it. It has not learned to completely

ignore the �rst argument, but the deviations from it are small enough

that the cost function of the permutation is able to compensate for it.

We can see that there is a faint grey diagonal area going from (0, 0)
to (1, 1) and to (1000, 1000), which could be an artefact from � having

small gradients due to its skew-symmetry when two numbers are close

to each other.

4.5.2 Image mosaics

Next, we investigate the behaviour of � on the image mosaic task. Since

our model uses the outputs of � in the optimisation process, we �nd it

easier to interpret � over 5 in the subsequent analysis.

66 4.5. Analysis of learned comparisons

100

50

0

50

100

75

50

25

0

25

50

75

Figure 4.15: Outputs of �1 (left half, row comparisons) and �2 (right half, column comparisons) for

pairs of tiles from an image in MNIST. For �1, the tiles are sorted left-to-right if only �1 was used

as cost. For �2, the tiles are sorted top-to-bottom if only �2 was used as cost. Blue indicates that

the tile to the left of this entry should be ordered left of the tile at the top for �1, the tile on the

left should be ordered above the tile at the top for �2. The opposite applies for red. The saturation

of the colour indicates how strong this ordering is.

Outputs

We start by looking at the output of �1 (costs for left-to-right ordering)

and �2 (costs for top-to-bottom ordering) for MNIST 2 × 2, shown in

Figure 4.15. First, there is a clear entry in each row and column of both

�1 and �2 that has the highest absolute cost (high colour saturation)

whenever the corresponding tiles �t together correctly. This shows that

it successfully learned to be con�dent what order two tiles should be

in when they �t together. From the two 2-by-2 blocks of red and blue

on the anti-diagonal, we can also see that it has learned that for the

per-row comparisons (�1), the tiles that should go into the left column

should generally compare to less than (i.e. should be permuted to be to

the left of) the tiles that go to the right. Similarly, for the per-column

comparisons (�2) tiles that should be at the top compare to less than

tiles that should be at the bottom. Lastly, �1 has a low absolute cost

when comparing two tiles that belong in the same column. These are

the entries in the matrix at the coordinates (1, 2), (2, 1), (4, 3), and (3, 4).

This makes sense, as �1 is concerned with whether one tile should be

to the left or right of another, so tiles that belong in the same column

should not have a preference either way. A similar thing applies to �2

for tiles that belong in the same row.

Sensitivity to positions

Next, we investigate what positions within the tiles �1 and �2 are most

sensitive to. This illustrates what areas of the tiles are usually important

for making comparisons. We do this by computing the gradients of

the absolute values of � with respect to the input tiles and averaging

over many inputs. For MNIST 2 × 2 (Figure 4.16, left), it learns no

particular spatial pattern for �1 and puts slightly more focus away from

Chapter 4. Permutation-optimisation 67

Figure 4.16: Sensitivity to positions within a tile for MNIST 2 × 2 (left), 3 × 3 (middle), and 4 × 4
(right). The left plot of each pair shows �1, the right plot shows �2.

Figure 4.17: Sensitivity to positions within a tile of the comparisons for CIFAR10 2 × 2 (left), 3 × 3
(middle), and 4 × 4 (right). The left plot of each pair shows �1, the right plot shows �2.

the centre of the tile for �2. As we will see later, it learns something

that is very content-dependent rather than spatially-dependent. With

increasing numbers of tiles on MNIST, it tends to focus more on edges,

and especially on corners. For the CIFAR10 dataset (Figure 4.17), there

is a much clearer distinction between left-right comparisons for �1 and

top-bottom comparisons for �2. For the 2 × 2 and 4 × 4 settings, it

relies heavily on the pixels on the left and right borders for left-to-right

comparisons, and top and bottom edges for top-to-bottom comparisons.

Interestingly, �1 in the 3×3 setting (middle pair) on CIFAR10 focuses on

the left and right halves of the tiles, but speci�cally avoids the borders.

A similar thing applies to �2, where a greater signi�cance is given to

pixels closer to the middle of the image rather than only focusing on

the edges. This suggests that it learns to not only match up edges as

with the other tile numbers, but also uses the content within the tile to

do more sophisticated content-based comparisons.

Per-tile gradients

Lastly, we can look at the gradients of � with respect to the input tiles for

speci�c pairs of tiles, shown in Figure 4.18 and Figure 4.19. This gives us

a better insight into what changes to the input tiles would a�ect the cost

of the comparison the most. These �gures can be understood as follows:

for each pair of tiles, we have the corresponding two gradient maps next

to them. Brightening the pixels for the blue entries in these gradient

maps would order the corresponding tile more strongly towards the left

for �1 and towards the top for �2. The opposite applies to brightening

the pixels with red entries. Vice versa, darkening pixels with blue entries

orders the tile more strongly towards the right for �1 and the bottom for

�2. More saturated colours in the gradient maps correspond to greater

e�ects on the cost when changing those pixels.

68 4.5. Analysis of learned comparisons

Figure 4.18: Gradient maps of pairs of tiles from MNIST for �1 (left half) and �2 (right half).

Each group of four consists of: tile 1, tile 2, gradient of � (C1, C2) with respect to tile 1, gradient of

� (C2, C1) with respect to tile 2.

Chapter 4. Permutation-optimisation 69

Figure 4.19: Gradient maps of pairs of tiles from CIFAR10 for �1 (left half) and �2 (right half).

Each group of four consists of: tile 1, tile 2, gradient of � (C1, C2) with respect to tile 1, gradient of

� (C2, C1) with respect to tile 2.

70 4.5. Analysis of learned comparisons

We start with gradients on the tiles for an input showing the digit 2 on

MNIST 2 × 2 in Figure 4.18. We focus on the �rst row, left side, which

shows a particular pair of tiles from this image and their gradients

of �1 (left-to-right ordering), and we share some of our observations

here:

• The gradients of the second tile show that to encourage the per-

mutation to place it to the right of the �rst tile, it is best to increase

the brightness of the curve in tile 2 that is already white (red en-

tries in tile 2 gradient map) and decrease the black pixels around

it (blue entries). This means that it recognised that this type of

curve is important in determining that it should be placed to the

right, perhaps because it matches up with the start of the curve

from tile 1. We can imagine the curve in the gradient map of tile

2 roughly forming part of a 7 rather than a 2 as well, so it is not

necessarily looking for the curve of a 2 speci�cally.

• In the gradient map of the �rst tile, we can see that to encourage it

to be placed to the left of tile 2, increasing the blue entries would

form a curve that would make the �rst tile look like part of an 8

rather than a 2, completing the other half of the curve from tile

2. This means that it has learned that to match something with

the shape in tile 2, a loop that completes it is best, but the partial

loop that we have in tile 1 satis�es part of this too.

• Notice how the gradient of tile 1 changes quite a bit when going

from row 1 to row 3, where it is paired up with di�erent tiles.

This suggests that the comparison has learned something about

the speci�c comparison between tiles being made, rather than

learning a general trend of where the tile should go. The latter

is what a linear assignment model is limited to doing because it

does not model pairwise interactions.

• In the third row, we can see that even though the two tiles do not

match up, there is a red blob on the left side of the tile 2 gradient

map. This blob would connect to the top part of the line in tile 1,

so it makes sense that making the two tiles match up more on the

border would encourage tile 2 to be ordered to the right of tile 1.

Similar observations apply to the right half of Figure 4.18, such as row

5, where tile 1 (which should go above tile 2) should have its pixels in

the bottom left increased and tile 2 should have its pixels in the top left

increased in order for tile 1 to be ordered before (i.e. above) tile 2 more

strongly.

On CIFAR10 2 × 2 in Figure 4.19, it is enough to focus on the borders

of the tiles. Here, it is striking how speci�cally it tries to match edge

Chapter 4. Permutation-optimisation 71

colours between tiles. For example, consider the blue sky in the left

half (�1), row 6. To order tile 1 to the left of tile 2, we should change

tile 1 to have brighter sky and darker red on the right border, and also

darken the black on the left border so that it matches up less well with

the right border of tile 2, where more of the bright sky is visible. For

tile 2, the gradient shows that it should also match up more on the left

border, and have increase the amount of bright pixels, i.e. sky, on the

right border, again so that it matches up less well with the left border

of tile 1 if they were to be ordered the opposing way.

4.6 Discussion

In this chapter, we proposed our Permutation-optimisation module for

learning permutations of sets using an optimisation-based approach. In

various experiments, we veri�ed the merit of our approach for learning

permutations and, from them, set representations. We think that the

optimisation-based approach to processing sets is currently underap-

preciated and hope that the techniques and results in this chapter will

inspire new algorithms for processing sets in a permutation-invariant

manner. Of course, there is plenty of work to be done. For example,

we have only explored one possible function for the total cost; di�er-

ent functions capturing di�erent properties may be used. The main

drawback of our approach is the cubic time complexity in the set size

compared to the quadratic complexity of Mena et al. [70], which limits

our model to tasks where the number of elements is relatively small.

While this is acceptable on the real-world dataset that we used – VQA

with up to 100 object proposals per image – with only a 30% increase

in computation time, our method does not scale to the much larger set

sizes encountered in domains such as point cloud classi�cation. Im-

provements in the optimisation algorithm may improve this situation,

perhaps through a divide-and-conquer approach.

We believe that going beyond tensors as basic data structures is impor-

tant for enabling higher-level reasoning. As a fundamental mathematical

object, sets are a natural step forward from tensors for modelling un-

ordered collections. The property of permutation invariance lends itself

to greater abstraction by allowing data that has no obvious ordering to

be processed, and we took a step towards this by learning an ordering

that existing neural networks are able to take advantage of.

72 4.6. Discussion

73

Chapter 5

Set auto-encoder:
Featurewise sort pooling

In this chapter, we will present a multitude of contributions to the set

neural network literature. We identify the responsibility problem in

existing set prediction models. We then develop a set encoder that

is simpler and faster than our model in Chapter 4. It is based on a

similar idea of turning the set into an ordered representation; we use

numerical sorting instead of trying to learn the ordering. To avoid the

responsibility problem, we develop a set decoder that is paired with our

set encoder.

These contributions have been presented as [114] at the Sets & Parti-

tions workshop, hosted at the Neural Information Processing Systems

(NeurIPS) 2019 conference, and have been submitted to the International

Conference on Learning Representations (ICLR) 2020.

5.1 Introduction

Consider the following task: you have a dataset wherein each data point

is a set of 2-d points that form the vertices of a regular polygon, and the

goal is to learn an auto-encoder on this dataset. The only variable is the

rotation of this polygon around the origin, with the number of points,

size, and centre of it �xed. Because the inputs and outputs are sets, this

problem has some unique challenges.

Encoder: This turns the set of points into a latent space. The order

of the elements in the set is irrelevant, so the feature vector the encoder

produces should be invariant to permutations of the elements in the set.

While there has been recent progress on learning such functions [110,

83], they compress a set of any size down to a single feature vector in

one step. This can be a signi�cant bottleneck in what these functions

74 5.2. Background

can represent e�ciently, particularly when relations between elements

of the set need to be modeled [75, 115].

Decoder: This turns the latent space back into a set. The elements

in the target set have an arbitrary order, so a standard reconstruction

loss cannot be used naïvely – the decoder would have to somehow

output the elements in the same arbitrary order. Methods like those in

Achlioptas et al. [1] therefore use an assignment mechanism to match

up elements (Section 5.2), after which a usual reconstruction loss can be

computed. Surprisingly, their model is still unable to solve the polygon

reconstruction task with close-to-zero reconstruction error, despite the

apparent simplicity of the dataset.

In this chapter, we introduce a set pooling method for neural networks

that addresses both the encoding bottleneck issue and the decoding

failure issue. We make the following contributions:

1. We identify the responsibility problem (Section 5.3). This is a

fundamental issue with existing set prediction models that has

not been considered in the literature before, explaining why these

models struggle to model even the simple polygon dataset.

2. We introduce FSPool: a di�erentiable, sorting-based pooling

method for variable-size sets (Section 5.4). By using our pooling

in the encoder of a set auto-encoder and inverting the sorting in the

decoder, we can train it with the usual MSE loss for reconstruction

without the need for an assignment-based loss. This avoids the

responsibility problem.

3. We show that our auto-encoder can learn polygon reconstruc-

tions with close-to-zero error, which is not possible with existing

set auto-encoders (Subsection 5.6.1). This bene�t transfers over to

a set version of MNIST, where the quality of reconstruction and

learned representation is improved (Subsection 5.6.2). In further

classi�cation experiments on CLEVR (Subsection 5.6.4) and sev-

eral graph classi�cation datasets (Subsection 5.6.5), using FSPool

in a set encoder improves over many non-trivial baselines.

5.2 Background

The problem with predicting sets is that the output order of the elements

is arbitrary, so computing an elementwise mean squared error does not

make sense; there is no guarantee that the elements in the target set

happen to be in the same order as they were generated. The existing

solution around this problem is an assignment-based loss, which assigns

Chapter 5. Featurewise sort pooling 75

each predicted element to its “closest” neighbour in the target set �rst,

after which a traditional pairwise loss can be computed.

We have a predicted set _̂ with feature vectors as elements and a ground-

truth set _ , and we want to measure how di�erent the two sets are.

These sets can be represented as matrices with the feature vectors

placed in the columns in some arbitrary order, so _̂ = [~̂1, . . . , ~̂=] and

_ = [~1, . . . ,~=] with = as the set size (columns) and 3 as the number of

features per element (rows). In this work, we assume that these two sets

have the same size. The usual way to produce _̂ is with a multi-layer

perceptron (MLP) that has 3 × = outputs.

Hungarian loss One way to do this assignment is to �nd a linear

assignment that minimises the total loss, which can be solved with the

Hungarian algorithm in$ (=3) time. With Π as the space of all =-length

permutations:

L� (_̂ , _) = min

c ∈Π

=∑
8

~̂8 −~c (8)

2 (5.1)

Chamfer loss Alternatively, we can assign each element directly

to the closest element in the target set. To ensure that all points in

the target set are covered, a term is added to the loss wherein each

element in the target set is also assigned to the closest element in the

predicted set. This has$ (=2) time complexity and can be run e�ciently

on GPUs.

L� (_̂ , _) =
∑
8

min

9

~̂8 −~ 9

2 +∑
9

min

8

~̂8 −~ 9

2 (5.2)

Both of these losses are examples of permutation-invariant functions:

the loss is the same regardless of how the columns of _ and _̂ are

permuted.

5.3 Responsibility problem

It turns out that standard neural networks struggle with modeling

symmetries that arise because there are =! di�erent list representations

of the same set, which we highlight here with an example. Suppose we

want to train an auto-encoder on our polygon dataset and have a square

(so a set of 4 points with the x-y coordinates as features) with some

arbitrary initial rotation (see Figure 5.2). Each pair in the 8 outputs of

the MLP decoder is responsible for producing one of the points in this

square (Figure 5.1). We mark each such pair with a di�erent colour in

the �gure.

76 5.3. Responsibility problem

Encoder M
LP

(-1, -1)
(1, -1)
(1, 1)
(-1, 1)

(-1, 1)
(1, 1)
(1, -1)
(-1, -1)

Figure 5.1: Each pair of outputs of the auto-encoder is responsible for one of the points of the set.

This responsibility is marked with the di�erent colours of the outputs.

90°

nU 90°−U−n

Figure 5.2: Discontinuity (red arrow) when rotating the set of points. The coloured points denote

which output of the network is responsible for which point. In the top path, the set rotated by 90°

is the same set (exactly the same shape before and after rotation) and encodes to the same feature

vector, so the output responsibility (colouring) must be the same too. In this example, after 30°

and a further small clockwise rotation by n , the point that each output pair is responsible for has

to suddenly change.

If we rotate the square (top left in �gure) by 90 degrees (top right in

�gure), we simply permute the elements within the set. They are the

same set, so they also encode to the same latent representation and

decode to the same list representation. This means that each output

is still responsible for producing the point at the same position after

the rotation, i.e. the dark red output is still responsible for the top left

point, the light red output is responsible for the top right point, etc.

However, this also means that at some point during that 90 degree

rotation (bottom path in �gure), there must exist a discontinuous jump

(red arrow in �gure) in how the outputs are assigned. We know that

the 90 degree rotation must start and end with the top left point being

produced by the dark red output. Thus, we know that there is a rotation

where all the outputs must simultaneously change which point they are

responsible for, so that completing the rotation results in the top left

point being produced by the dark red output. Even though we change

the set continuously, the list representation (MLP or RNN outputs) must

change discontinuously.

This is a challenge for neural networks to learn, since they can typically

only model functions without discontinuous jumps. As we increase the

number of vertices in the polygon (number of set elements), it must

learn an increasing frequency of situations where all the outputs must

Chapter 5. Featurewise sort pooling 77

discontinuously change at once, which becomes very di�cult to model.

Our experiment in Subsection 5.6.1 con�rms this.

This example highlights a more general issue: whenever there are

at least two set elements that can be smoothly interchanged, these

discontinuities arise. For example, the set of bounding boxes in object

detection can be interchanged in much the same way as the points of

our square here. An MLP or RNN that tries to generate these (like in

Rezato�ghi et al. [86] and Stewart et al. [95]) must handle which of its

outputs is responsible for what element in a discontinuous way. Note

that traditional object detectors like Faster R-CNN do not have this

responsibility problem, because they do not treat object detection as a

proper set prediction task with their anchor-based approach.

5.3.1 Formal statement

The following theorem is a more formal treatment of the responsibility

problem resulting in discontinuities.

Theorem 1 For any set function 5 : S3= → R3×= (3 ≥ 2, = ≥ 2, S3= is

the set of all sets of size = with elements in R3) from a set of points Y = {x1,
x2, . . ., x=} to a list representation of that set R = [xf (1) , xf (2) , . . . , xf (=)]
with some �xed permutation f ∈ Π, there will be a discontinuity in 5 :

there exists an Y > 0 such that for all X > 0, there exist two sets Y1 and Y2
where:

3B (Y1, Y2) < X and 3; (5 (Y1), 5 (Y2)) ≥ Y. (5.3)

3B is a measure of the distance between two sets (e.g. Chamfer loss) and 3;
is the sum of Euclidean distances (3; (G,H) =

∑
9

a 9 − b 9

2).
Proof. We prove the theorem by considering mappings from a set of two

points in two dimensions. For larger sets or sets with more dimensions,

θ

Figure 5.3: Example of the set containing two points.

78 5.3. Model

we can isolate two points and two dimensions and ignore the remaining

points and dimensions.

Let us consider the set of two points Y (\) =
{[
− cos(\)
− sin(\)

]
,

[
cos(\)
sin(\)

]}
(see

Figure 5.3). This is mapped to a list R(\) = 5 (Y (\)). Without loss

of generality, we can assume that our list representation for \ = 0 is

R(0) =
[
− cos(0) cos(0)
− sin(0) sin(0)

]
=

[−1 1
0 0

]
. Since the order of set elements is

irrelevant and 5 is a (permutation-invariant) set function, Y (c) = Y (0)
and therefore R(c) = R(0) =

[−1 1
0 0

]
. This implies that for at least one

value of \ = \ ∗, there is a change in responsibility such that for \ ≤ \ ∗,
the list representation will be R1(\) =

[
− cos(\)
− sin(\)

cos(\)
sin(\)

]
while for \ > \ ∗,

the list representation will be R2(\) =
[

cos(\)
sin(\)

− cos(\)
− sin(\)

]
in order to satisfy

R(c) = R(0). For any \ , 3; (R1(\), R2(\)) = 4.

Let Y = 3.9 and X be given. We can �nd a su�ciently small U > 0 so that

3B (Y (\ ∗), Y (\ ∗ + U)) < X and 3; (R(\ ∗), R(\ ∗ + U)) > Y. �

5.4 Featurewise sort pooling

The main idea behind our pooling method is simple: sorting each feature

across the elements of the set and performing a weighted sum. The

numerical sorting ensures the property of permutation-invariance. The

di�culty lies in how to determine the weights for the weighted sum in

a way that works for variable-sized sets.

A key insight for auto-encoding is that we can store the permutation

that the sorting applies in the encoder and apply the inverse of that per-

mutation in the decoder. This allows the model to restore the arbitrary

order of the set element so that it no longer needs an assignment-based

loss for training. This avoids the problem in Figure 5.2, because rotating

the square by 90° also permutes the outputs of the network accord-

ingly. Thus, there is no longer a discontinuity in the outputs during

this rotation. In other words, we make the auto-encoder permutation-

equivariant: permuting the input set also permutes the neural network’s

output in the same way. This also means that R(c) ≠ R(0), so the proof

no longer applies.

We describe the model for the simplest case of encoding �xed-size sets in

Subsection 5.4.1, extend it to variable-sized sets in Subsection 5.4.2, then

discuss how to use this in an auto-encoder in Subsection 5.4.3.

5.4.1 Fixed-size sets

We are given a set of = feature vectors ^ = [x1, . . . , x=] where each x8

is a column vector of dimension 3 placed in some arbitrary order in the

columns of ^ ∈ R3×= . From this, the goal is to produce a single feature

Chapter 5. Featurewise sort pooling 79

{ }^

sort

®̂ ~

dot product

5 ([0, 13 , 23 ,1], ¯])

discretise

5 (·, ¯])

Figure 5.4: Overview of our FSPool model for variable-sized sets. In this example, the weights

de�ne piecewise linear functions with two pieces. The four dots on each line correspond to the

positions where 5 is evaluated for a set of size four.

vector in a way that is invariant to permutation of the columns in the

matrix.

We �rst sort each of the 3 features across the elements of the set by

numerically sorting within the rows of ^ to obtain the matrix of sorted

features ®̂ :

®-8, 9 = Sort(^ 8,:)9 (5.4)

where ^ 8,: is the 8th row of ^ and Sort(·) sorts a vector in descending

order. While this may appear strange since the columns of ®̂ no longer

correspond to individual elements of the set, there are good reasons

for this. A transformation (such as with an MLP) prior to the pooling

can ensure that the features being sorted are mostly independent so

that little information is lost by treating the features independently.

Also, if we were to sort whole elements by one feature, there would

be discontinuities whenever two elements swap order. This problem is

avoided by our featurewise sorting.

E�cient parallel implementations of Sort are available in Deep Learn-

ing frameworks such as PyTorch, which uses a bitonic sort ($ (log
2 =)

parallel time,$ (= log
2 =) comparisons). While the permutation that the

sorting applies is not di�erentiable, gradients can still be propagated

pathwise according to this permutation in a similar way as for max

pooling.

Then, we apply a learnable weight matrix] ∈ R3×= to ®̂ by ele-

mentwise multiplying and summing over the columns (row-wise dot

products).

~8 =

=∑
9

,8, 9
®-8, 9 (5.5)

~ ∈ R3 is the �nal pooled representation of ®̂ . The weight vector allows

di�erent weightings of di�erent ranks and is similar in spirit to the

parametric version of the gather step in Gather-Excite [46]. This is a

80 5.4. Model

generalisation of both max and sum pooling, since max pooling can be

obtained with the weight vector [1, 0, . . . , 0] and sum pooling can be

obtained with the 1 vector. Thus, it is also a maximally powerful pooling

method for multisets [104] while being potentially more �exible [75] in

what it can represent.

5.4.2 Variable-size sets

When the size = of sets can vary, our previous weight matrix can no

longer have a �xed number of columns. To deal with this, we de�ne a

continuous version of the weight vector in each row: we use a �xed num-

ber of weights to parametrise a piecewise linear function 5 : [0, 1] → R,

also known as calibrator function [50]. For a set of size three, this func-

tion would be evaluated at 0, 0.5, and 1 to determine the three weights

for the weighted sum. For a set of size four, it would be evaluated at 0,

1/3, 2/3, and 1. This decouples the number of columns in the weight

matrix from the set size that it processes, which allows it to be used for

variable-sized sets.

To parametrise a piecewise linear function 5 , we have a weight vector

w̄ ∈ R: where : − 1 is the number of pieces de�ned by the : points.

With the ratio A ∈ [0, 1],

5 (A, w̄) =
:∑
8=1

max (0, 1 − |A (: − 1) − (8 − 1) |) F̄8 (5.6)

The max(·) term selects the two nearest points to A and linearly inter-

polates them. For example, if : = 3, choosing A ∈ [0, 0.5] interpolates

between the �rst two points in the weight vector with (1 − 2A)F1 +
2AF2.

We have a di�erent w̄ for each of the 3 features and place them in the

rows of a weight matrix]̄ ∈ R3×: , which no longer depends on =.

Using these rows with 5 to determine the weights:

~8 =

=∑
9=1

5

(
9 − 1
= − 1,]̄ 8,:

)
®-8, 9 (5.7)

~ is now the pooled representation with a potentially varying set size

= as input. When = = : , this reduces back to Equation 5.5. For most

experiments, we simply set : = 20 without tuning it.

5.4.3 Auto-encoder

To create an auto-encoder, we need a decoder that turns the latent space

back into a set. Analogously to image auto-encoders, we want this

Chapter 5. Featurewise sort pooling 81

decoder to roughly perform the operations of the encoder in reverse. The

FSPool in the encoder has two parts: sorting the features, and pooling

the features. Thus, the FSUnpool version should “unpool” the features,

and “unsort” the features. For the former, we de�ne an unpooling

version of Equation 5.7 that distributes information from one feature

vector to a variable-size list of feature vectors. For the latter, the idea

is to store the permutation of the sorting from the encoder and use

the inverse of it in the decoder to unsort it. This allows the auto-

encoder to restore the original ordering of set elements, which makes it

permutation-equivariant.

With ~′ ∈ R3 as the vector to be unpooled, we de�ne the unpooling

similarly to Equation 5.7 as

®- ′8, 9 = 5
(
9 − 1
= − 1,]̄

′
8,:

)
~ ′8 (5.8)

In the non-autoencoder setting, the lack of di�erentiability of the permu-

tation is not a problem due to the pathwise di�erentiability. However,

in the auto-encoder setting we make use of the permutation in the

decoder. While gradients can still be propagated through it, it intro-

duces discontinuities whenever the sorting order in the encoder for

a set changes, which we empirically observed to be a problem. To

avoid this issue, we need the permutation that the sort produces to be

di�erentiable. To achieve this, we use the recently proposed sorting

networks [39], which is a continuous relaxation of numerical sorting.

This gives us a di�erentiable approximation of a permutation matrix

V 8 ∈ [0, 1]=×=, 8 ∈ {1, . . . , 3} for each of the 3 features, which we can

use in the decoder while still keeping the model fully di�erentiable. It

comes with the trade-o� of increased computation costs with $ (=2)
time and space complexity, so we only use the relaxed sorting in the

auto-encoder setting. It is possible to decay the temperature of the

relaxed sort throughout training to 0, which allows the more e�cient

traditional sorting algorithm to be used at inference time.

Lastly, we can use the inverse of the permutation from the encoder to

restore the original order.

- ′8, 9 = (®̂
′
8,:V

T
8)9 (5.9)

where VT
8 permutes the elements of the 8th row in ®- ′.

Because the permutation is stored and used in the decoder, this makes

our auto-encoder similar to a U-net architecture [68] since it is possible

for the network to skip the small latent space. Typically we �nd that

82 5.5. Related work

this only starts to become a problem when 3 is too big, in which case it

is possible to only use a subset of the %8 in the decoder to counteract

this.

5.5 Related work

We are proposing a di�erentiable function that maps a set of feature

vectors to a single feature vector. This has been studied in many works

such as Deep Sets [110] and PointNet [83], with universal approxima-

tion theorems being proven. In our notation, the Deep Sets model is

6(∑9 ℎ(^ :, 9)) where ℎ : R3 → R? and 6 : R? → R@ . Since this is $ (=)
in the set size =, it is clear that while it may be able to approximate

any set function, problems that depend on higher-order interactions

between di�erent elements of the set will be di�cult to model aside

from pure memorisation. This explains the success of relation networks

(RN), which simply perform this sum over all pairs of elements, and has

been extended to higher orders by Murphy et al. [75]. Our work pro-

poses an alternative operator to the sum that is intended to allow some

relations between elements to be modeled through the sorting, while

not incurring as large of a computational cost as the $ (=2) complexity

of RNs.

Sorting-based set functions The use of sorting has often been con-

sidered in the set learning literature due to its natural way of ensuring

permutation-invariance. The typical approach is to sort elements of the

set as units rather than our approach of sorting each feature individu-

ally.

For example, the similarly-named SortPooling [112] sorts the elements

based on one feature of each element. However, this introduces discon-

tinuities into the optimisation whenever two elements swap positions

after the sort. For variable-sized sets, they simply truncate (which again

adds discontinuities) or pad the sorted list to a �xed length and process

this with a CNN, treating the sorted vectors as a sequence. Similarly,

Cangea et al. [18] and Gao et al. [33] truncate to a �xed-size set by

computing a score for each element and keeping elements with the

top-k scores. In contrast, our pooling handles variable set sizes without

discontinuities through the featurewise sort and continuous weight

space. Gao et al. [33] propose a graph auto-encoder where the decoder

use the “inverse” of what the top-k operator does in the encoder, similar

to our approach. Instead of numerically sorting, Mena et al. [70] and our

Permutation-optimisation model (Chapter 4) learn an ordering of set

elements instead. Our FSPool model introduced here has the bene�t of

only Θ(= log=) time complexity, compared to Permutation-optimisation

Chapter 5. Featurewise sort pooling 83

Figure 5.5: Examples from polygon dataset for = ∈ {2, 4, 8, 16}.

with Θ(=3), so it is much easier to use with larger sets and thus a greater

variety of tasks.

Outside of the set learning literature, rank-based pooling in a convolu-

tional neural network has been used in Shi et al. [91], where the rank is

turned into a weight. Sorting within a single feature vector has been

used for modeling more powerful functions under a Lipschitz constraint

for Wasserstein GANs [5] and improved robustness to adversarial ex-

amples [23].

Set prediction Assignment-based losses combined with an MLP or

similar are a popular choice for various auto-encoding and generative

tasks on point clouds [29, 105, 1]. An interesting alternative approach

is to perform the set generation sequentially [95, 103, 51, 108]. The

di�culty lies in how to turn the set into one or multiple sequences,

which these papers try to solve in di�erent ways.

5.6 Experiments

We start with two auto-encoder experiments, then move to tasks where

we replace the pooling in an established model with FSPool. Full results

can be found in the appendices, experimental details can be found in

Section A.3, and we provide our code for reproducibility at https:

//github.com/Cyanogenoid/fspool.

5.6.1 Rotating polygons

We start with our simple dataset of auto-encoding regular polygons

(Section 5.3), with each point in a set corresponding to the x-y coordinate

of a vertex in that polygon. This dataset is designed to explicitly test

whether the responsibility problem occurs in practice. We keep the set

size the same within a training run and only vary the rotation. We try

this with set sizes of increasing powers of 2. We show some examples

of di�erent set sizes in Figure 5.5.

Model The encoder contains a 2-layer MLP applied to each set el-

ement, FSPool, and a 2-layer MLP to produce the latent space. The

decoder contains a 2-layer MLP, FSUnpool, and a 2-layer MLP applied

https://github.com/Cyanogenoid/fspool
https://github.com/Cyanogenoid/fspool

84 5.6. Experiments

Table 5.1: Direct mean squared error (in hundredths) on Polygon dataset with di�erent number of

points in the set. Lower is better.

Set size 2 4 8 16 32 64

FSPool 0.000 0.001 0.000 0.000 0.000 0.0001
Random 100.323 100.134 99.367 99.951 99.438 99.523

Table 5.2: Chamfer loss (in hundredths) on Polygon dataset with di�erent number of points in the

set. Lower is better.

Set size 2 4 8 16 32 64

FSPool 0.001 0.001 0.001 0.000 0.001 0.002
MLP + Chamfer 1.189 1.771 0.274 1.272 0.316 0.085

MLP + Hungarian 1.517 0.400 0.251 1.266 0.326 0.081

Random 72.848 19.866 5.112 1.271 0.322 0.081

Table 5.3: Hungarian loss (in hundredths) on Polygon dataset with di�erent number of points in

the set. Lower is better.

Set size 2 4 8 16 32 64

FSPool 0.000 0.001 0.000 0.000 0.000 0.001
MLP + Chamfer 0.595 0.885 0.137 0.641 0.160 0.285

MLP + Hungarian 0.758 0.200 0.126 0.634 0.163 0.040

Random 36.424 9.933 2.556 0.635 0.161 0.041

on each set element. We train this model to minimise the mean squared

error. As baseline, we use a model where the decoder has been replaced

with an MLP and train it with either the linear assignment or Chamfer

loss (equivalent to AE-EMD and AE-CD models in Achlioptas et al. [1]).

We also include a random baseline that outputs a polygon with the

correct size and centre, but random rotation.

Results First, we veri�ed that if the latent space is always zeroed out,

the model with FSPool is unable to train, suggesting that the latent space

is being used and is necessary. In Table 5.1, Table 5.2, and Table 5.3, we

show the results of various model and training loss combinations. For

our training runs with set sizes up to 128, our auto-encoder is able to

reconstruct the point set close to perfectly. Meanwhile, the baseline

converges signi�cantly slower with high reconstruction error when the

number of points is 8 or fewer and outputs the same set irrespective of

input above that, regardless of loss function. This shows that FSPool

with the direct MSE training loss is clearly better than the baseline

trained with either Hungarian or Chamfer loss.

Even when signi�cantly increasing the latent size, dimensionality of

layers, tweaking the learning rate, and replacing FSPool in the encoder

with sum, mean, or max, the baseline trained with the Hungarian or

Chapter 5. Featurewise sort pooling 85

Ta
rg

et
In

pu
t

= 0.00

Ou
rs

Ba
se

lin
e

= 0.00 = 0.01 = 0.01 = 0.02 = 0.02 = 0.03 = 0.03 = 0.04 = 0.04 = 0.05 = 0.05

Figure 5.6: MNIST as point sets with di�erent amounts of Gaussian noise (f) and their reconstruc-

tions. The baseline uses sum pooling and an MLP decoder, which had the best quantitative results

among the baselines. We used the best network for our model (0.28 × 104 average Chamfer loss)

and the best network for the baseline model (0.20 × 104 average Chamfer loss). The examples are

not cherry-picked.

Chamfer loss fails completely at 16 points. We veri�ed that for 4 points,

the baseline shows the discontinuous jump behaviour in the outputs as

we predict in Figure 5.2.

This experiment highlights the di�culty of learning this simple dataset

with traditional approaches due to the responsibility problem, while

our model is able to �t this dataset with ease.

5.6.2 Noisy MNIST reconstruction

Next, we turn to the harder task of auto-encoding MNIST images –

turned into sets of points – using a denoising auto-encoder. Each pixel

that is above the mean pixel level is considered to be part of the set with

its x-y coordinates as feature, scaled to be within the range of [0, 1].

The set size varies between examples and is 133 on average. We add

Gaussian noise to the points in the set and use the set without noise as

training target for the denoising auto-encoder.

Model We use exactly the same architecture as on the polygon dataset.

As baseline models, we combine sum/mean/max pooling encoders with

MLP/LSTM decoders and train with the Chamfer loss. This closely

corresponds to the AE-CD approach [1] with the MLP decoder and the

model by Stewart et al. [95] with the LSTM decoder.

Results We show the quantitative results for the default MNIST set-

ting in Table 5.4. Interestingly, the sum pooling baseline has a lower

Chamfer reconstruction error than our model, despite the example

outputs in Figure 5.6 looking clearly worse. This demonstrates the

weakness of the Chamfer loss we mentioned in Subsection 2.4.1 when

comparing multisets. Our model avoids this weakness by being trained

86 5.6. Experiments

Table 5.4: Test Chamfer loss (in 1000ths) for MNIST for di�erent input noise levels f over 6 runs.

Lower is better.

Noise f 0.00 0.01 0.02 0.03 0.04 0.05

FSPool + FSUnpool 0.42±0.06 0.34±0.05 0.36±0.02 0.38±0.03 0.41±0.00 0.44±0.01

Sum + MLP 0.30±0.04 0.28±0.03 0.28±0.03 0.28±0.03 0.27±0.01 0.31±0.04

Sum + RNN 0.76±0.46 0.58±0.06 0.57±0.09 0.54±0.11 0.64±0.13 0.78±0.39

Max + MLP 1.29±0.23 1.37±0.28 1.23±0.16 1.74±0.32 1.27±0.19 1.43±0.30

Mean + MLP 1.41±0.12 1.22±0.18 1.33±0.29 1.25±0.09 1.31±0.15 1.49±0.31

Table 5.5: Test Chamfer loss (in 1000ths) for MNIST with additional mask features on every

element for di�erent input noise levels f over 6 runs. Lower is better.

Noise f 0.00 0.01 0.02 0.03 0.04 0.05

FSPool + FSUnpool 0.28±0.03 0.21±0.01 0.25±0.03 0.25±0.01 0.27±0.01 0.30±0.01

Sum + MLP 0.87±0.43 0.90±0.39 0.61±0.40 0.99±0.84 0.63±0.27 0.61±0.24

Sum + RNN 0.58±0.13 0.69±0.16 0.60±0.18 1.35±1.53 0.73±0.12 0.63±0.13

Max + MLP 5.91±3.10 4.78±3.05 7.10±2.40 5.05±2.87 5.85±3.11 4.57±2.08

Mean + MLP 5.92±3.10 4.55±3.17 6.84±2.84 7.11±2.39 3.04±0.78 6.34±2.53

with a normal MSE loss (with the trade-o� of a potentially higher Cham-

fer loss), which is not possible with the baselines. This MSE loss ensures

that our model always has to predict the correct set size. The sum

pooling baseline has a better test Chamfer loss because it is trained to

minimise it, but it is also solving an easier task, since it does not need

to distinguish padding from non-padding elements.

The main reason for this di�erence comes from the shortcoming of the

Chamfer loss in distinguishing sets with duplicates or near-duplicates.

For example, the Chamfer loss between [1, 1.001, 9] and [1, 9, 9.001]
is close to 0. Most points in an MNIST set are quite close to many

other points and there are many duplicate padding elements, so this

problem with the Chamfer loss is certainly present on MNIST. That is

why minimising MSE can lead to di�erent results with higher Chamfer

loss than minimising Chamfer loss directly, even though the qualitative

results seem worse for the latter.

We can make the comparison between our model and the baselines more

similar by forcing the models to predict an additional “mask feature”

for each set element. This takes the value 1 when the point is present

(non-padding element) and 0 (padding element) when not. This setting

is useful for tasks where the predicted set size matters, as it allows points

at the coordinates (0, 0) to be distinguished from padding elements. The

results of this variant are shown in Table 5.5. Now, our model is clearly

better: even though our auto-encoder minimises an MSE loss, the test

Chamfer loss is also much better than all the baselines. Having to predict

Chapter 5. Featurewise sort pooling 87

this additional mask feature does not a�ect our model predictions much

because our model structure lets our model “know” which elements

are padding elements, while this is much more challenging for the

baselines.

We can also qualitatively compare our FSPool-FSUnpool model against

the best baseline, which uses the sum pooling encoder and MLP decoder

(Figure 5.6). In general, our model can reconstruct the digits much better

than the baseline, which tends to predict too few points even though

it always has 342 (the maximum set size) times 2 outputs available.

Occasionally, the baseline also makes big errors such as turning 5s

into 8s (�rst f = 0.01 example), which we have not observed with our

model.

5.6.3 Noisy MNIST classi�cation

Instead of auto-encoding MNIST sets, we can also classify them. We

use the same dataset and replace the set decoder in our model and the

baseline with a 2-layer MLP classi�er. We consider three variants: using

the trained auto-encoder weights for the encoder and freezing them,

not freezing them (�netuning), and training all weights from random

initialisation. This tests how informative the learned representations of

the pre-trained auto-encoder and the encoder are.

Results We show our results for 1 or 10 epochs and f = 0.05 in

Table 5.6, for f = 0.00 in Table 5.7, and for 100 epochs and both f values

in Table 5.8. These are based on pre-trained models from the default

MNIST setting without mask feature.

The FSPool-based models are consistently superior to all the baselines

in all training settings. Even though our model can store information

in the permutation that skips the latent space (the model could “cheat”

the reconstruction by somehow storing everything in the permuta-

tion matrix), our latent space contains more information to correctly

classify a set, even when the weights are �xed. Our model with �xed

encoder weights already performs better after 1 epoch of training than

the baseline models with unfrozen weights after 10 epochs of training.

This shows the bene�t of the FSPool-FSUnpool auto-encoder to the

representation. When allowing the encoder weights to change (Un-

frozen and Random init), our results again improve signi�cantly over

the baselines.

Interestingly, switching the relaxed sort to the unrelaxed sort in our

model when using the �xed auto-encoder weights does not hurt accu-

racy. Training the FSPool model takes 45 seconds per epoch on a GTX

88 5.6. Experiments

Table 5.6: Classi�cation accuracy (mean ± stdev) on MNIST f = 0.05 over 6 runs (di�erent pre-

trained networks between runs). Frozen: training with frozen pre-trained auto-encoder weights.

Unfrozen: unfrozen auto-encoder weights (�ne-tuning). Random init: auto-encoder weights not

used.

1 epoch of training 10 epochs of training

Frozen Unfrozen Random init Frozen Unfrozen Random init

FSPool 82.2%±2.1 86.9%±1.3 84.7%±1.9 84.3%± 1.8 91.5%±0.5 91.9%±0.5

Sum 76.6%±1.3 68.7%±3.5 30.3%±5.6 79.0%±1.0 77.7%±2.3 72.7%±3.4

Mean 25.7%±3.6 32.2%±10.5 30.1%±1.6 36.8%±5.0 75.0%±2.7 73.0%±1.7

Max 73.6%±1.3 73.0%±3.5 56.1%±5.6 77.3%±0.9 80.4%±1.8 76.9%±1.3

Table 5.7: Classi�cation accuracy (mean ± stdev) on MNIST f = 0.00 over 6 runs.

1 epoch of training 10 epochs of training

Frozen Unfrozen Random init Frozen Unfrozen Random init

FSPool 86.3%±1.6 92.3%±1.1 90.5%±1.2 88.2%±1.4 96.0%±0.3 96.1%±0.3

Sum 82.3%±1.2 77.9%±3.4 35.3%±8.3 85.0%±0.8 84.2%±2.5 78.4%±3.9

Mean 27.0%±3.3 43.5%±7.1 31.2%±1.0 42.0%±7.7 76.7%±2.6 77.2%±2.2

Max 82.0%±1.8 84.1%±1.4 62.9%±3.5 86.8%±0.9 91.9%±1.3 87.7%±1.2

Table 5.8: Classi�cation accuracy (mean ± stdev) on MNIST for 100 epochs over 6 runs.

f = 0.05, 100 epochs f = 0.00, 100 epochs

Frozen Unfrozen Random init Frozen Unfrozen Random init

FSPool 84.9%±1.7 93.9%±0.4 94.0%±0.3 88.6%±1.6 97.4%±0.3 97.5%±0.3

Sum 79.8%±1.0 85.3%±1.1 83.1%±1.9 85.6%±0.9 89.5%±2.5 88.3%±1.4

Mean 48.2%±6.9 86.5%±0.8 84.1%±2.3 57.0%±7.7 90.3%±1.3 91.1%±0.8

Max 78.8%±0.8 84.7%±1.0 84.6%±0.9 89.2%±0.8 95.3%±0.7 95.1%±1.5

Chapter 5. Featurewise sort pooling 89

Table 5.9: CLEVR results over 10 runs: mean ± stdev of accuracy after 350 epochs, epochs to reach

an accuracy milestone, and wall time required with a 1080 Ti GPU. * averages over only 8 runs

because 2 runs did not reach 99%. MAC [47] is a model speci�cally designed for CLEVR and the

state-of-the-art for image inputs and without program supervision.

Epochs to reach accuracy Time for

Model Accuracy 98.00% 98.50% 99.00% 350 epochs

FSPool 99.27%±0.18 141± 5 166±16 209±33 8.8 h

RN 98.98%±0.25 144± 6 189±29 *268±46 15.5 h

Janossy 97.00%±0.54 – – – 11.5 h

Sum 99.05%±0.17 146±13 191±40 281±56 8.0 h

Mean 98.96%±0.27 169± 6 225±31 273±33 8.0 h

Max 96.99%±0.26 – – – 8.0 h

MAC 99.0 % – – – –

1080 GPU, only slightly more than the baselines with 37 seconds per

epoch.

Note that while Qi et al. [83] report an accuracy of ∼99% on a similar

set version of MNIST, our model uses noisy sets as input and is much

smaller and simpler: we have 3820 parameters, while their model has

1.6 million parameters. Our model also does not use dropout, batch

norm, a branching network architecture, nor a stepped learning rate

schedule. When we try to match their model size, our accuracies for

f = 0.00 increase to ∼99% as well.

5.6.4 CLEVR

CLEVR [51] is a visual question answering dataset where the task is

to classify an answer to a question about an image. The images show

scenes of 3D objects with di�erent attributes, and the task is to answer

reasoning questions such as “what size is the sphere that is left of the

green thing”. Since we are interested in sets, we use this dataset with

the ground-truth state description – the set of objects (maximum size

10) and their attributes – as input instead of an image of the rendered

scene.

Model For this dataset, we compare against relation networks (RN)

[88] – explicitly modeling all pairwise relations –, Janossy pooling [75],

and regular pooling functions. While the original RN paper reports

a result of 96.4% for this dataset, we use a tuned implementation by

Messina et al. [71] with 2.6% better accuracy. For our model, we modify

this to not operate on pairwise relations and replace the existing sum

pooling with FSPool. We use the same hyperparameters for our model

as the strong RN baseline without further tuning them.

90 5.6. Experiments

Results Over 10 runs, Table 5.9 shows that our FSPool model reaches

the best accuracy and also reaches the listed accuracy milestones in

fewer epochs than all baselines. The di�erence in accuracy is statistically

signi�cant (two-tailed t-tests against sum, mean, RN, all with ? ≈ 0.01).
Also, FSPool reaches 99% accuracy in 5.3 h, while the fastest baseline,

mean pooling, reaches the same accuracy in 6.2 h. Surprisingly, RNs

do not provide any bene�t here, despite the hyperparameters being

explicitly tuned for the RN model. We show some of the functions

5 (·,]̄) that FSPool has learned in Figure 5.7. These con�rm that FSPool

uses more complex functions than just sums or maximums, which

allow it to capture more information about the set than other pooling

functions.

5.6.5 Graph classi�cation

We perform a large number of experiments on various graph classi-

�cation datasets from the TU repository [54]: 4 graph datasets from

bioinformatics (for example with the graph encoding the structure of a

molecule) and 5 datasets from social networks (for example with the

graph encoding connectivity between people who worked with each

other). The task is to classify the whole graph into one of multiple

classes such as positive or negative drug response.

Model We use the state-of-the-art graph neural network GIN [104] as

baseline. This involves a series of graph convolutions (which includes

aggregation of features from each node’s set of neighbours into the

node), a readout (which aggregates the set of all nodes into one feature

vector), and a classi�cation with an MLP. We replace the usual sum

or mean pooling readout with FSPool : = 5 for our model. We repeat

10-fold cross-validation on each dataset 10 times and use the same

hyperparameter ranges as Xu et al. [104] for our model and the GIN

baseline.

Experimental setup The datasets and node features used are the

same as in GIN; we did not cherry-pick them. Because the social network

datasets are purely structural without node features, a constant 1 feature

is used on the RDT datasets and the one-hot-encoded node degree is

used on the other social network datasets. The hyperparameter sweep

is done based on best validation accuracy for each fold in the cross-

validation individually and over the same combinations as speci�ed in

GIN.

Note that in GIN, hyperparameters are selected based on best test accu-

racy. This is a problem, because they consider the number of epochs

a hyperparameter when accuracies tend to signi�cantly vary between

Chapter 5. Featurewise sort pooling 91

Figure 5.7: Shapes of piecewise linear functions learned by the FSPool model on CLEVR. These

show A ∈ [0, 1] on the x-axis and 5 (A, w̄) on the y-axis for a particular w̄ of a fully-trained model.

A common shape among these functions are variants of max pooling: close to 0 weight for most

ranks and a large non-zero weight on either the maximum or the minimum value, for example

in row 2 column 2. There are many functions that simple maximums or sums can not easily

represent, such as a variant of max pooling with the values slightly below the max receiving a

weight of the opposite sign (see row 1 column 1) or the shape in the penultimate row column 5.

The functions shown here may have a stronger tendency towards 0 values than normal due to

the use of weight decay on CLEVR.

92 5.7. Discussion

individual epochs. For example, our average result on the PROTEINS

dataset would change from 73.8% to 77.1% if we were to select based on

best test accuracy, which would be better than their 76.2%.

While we initially also used : = 20 in FSPool for this experiment, we

found that : = 5 was consistently an improvement. The : = 20 model

was still better than the baseline on average by a smaller margin.

Results We show the results in Table 5.10. On 6 out of 9 datasets,

GIN-FSPool achieves better test accuracy than GIN-Base. On a di�erent

6 datasets, it converges to the best validation accuracy faster.

The most signi�cant improvements are on the two RDT datasets. Inter-

estingly, these are the two datasets where the number of nodes to be

pooled is by far the largest with an average of 400+ nodes per graph,

compared to the next largest COLLAB with an average of only 75 nodes.

This is perhaps evidence that FSPool is helping to avoid the bottleneck

problem of pooling a large set of feature vectors to a single feature

vector. Mean and sum pooling are mostly able to keep up with FSPool

on the smaller set sizes, but are bottlenecked for the RDT datasets with

the much larger set sizes.

A Wilcoxon signed-rank test shows that the di�erence in accuracy to the

standard GIN has ? ≈ 0.07 (, = 7) and the di�erence in convergence

speed has ? ≈ 0.11 (, = 9). Keep in mind that just because the results

have ? > 0.05, it does not mean that the results are invalid.

We emphasise that the main comparison to be made is between the

GIN-Sum and the GIN-FSPool model in the last four rows, since that is

the only comparison where the only factor of di�erence is the pooling

method. When comparing against other models, the network architec-

ture, training hyperparameters, and evaluation methodology can di�er

signi�cantly.

Keep in mind that while GIN-Base looks much worse than the original

GIN-Base*, the di�erence is that our implementation has hyperparame-

ters properly selected by validation accuracy, while GIN-Base* selected

them by test accuracy. If we were to select based on test accuracy, our

implementation frequently outperforms their results. Also, they only

performed a single run of 10-fold cross-validation, while our results are

averaged over 10 repeats of 10-fold cross validation.

5.7 Discussion

In this chapter, we identi�ed the responsibility problem with existing

approaches for predicting sets and introduced FSPool, which provides a

way around this issue in auto-encoders. In experiments on two datasets

Chapter 5. Featurewise sort pooling 93

Table 5.10: Cross-validation classi�cation results (%) on various commonly-used graph classi�-

cation datasets, with the mean cross-validation accuracy averaged over 10 repeats and sample

standard deviations (±). Hyperparameters of entries marked with * are known to be selected

based on test accuracy instead of validation accuracy, so results are likely not comparable to other

existing approaches that were (hopefully) selected based on validation accuracy. Our results were

selected based on validation accuracy.

Social Network IMDB-B IMDB-M RDT-B RDT-M5K COLLAB

Num. graphs 1000 1500 2000 5000 5000

Num. classes 2 3 2 5 3

Avg. nodes 19.8 13.0 429.6 508.5 74.5

Max. nodes 136 89 3063 2012 492

DCNN [7] 49.1 33.5 – – 52.1

Patchy-san [77] 71.0 ±2.3 45.2 ±2.8 86.3 ±1.6 49.1 ±0.7 72.6 ±2.2

SortPool [112] 70.0 ±0.9 47.8 ±0.9 – – 73.8 ±0.5

DiffPool [107] – – – – 75.5

WL* [104] 73.8 50.9 81.0 52.5 78.9

GIN-Base* [104] 75.1 52.3 92.4 57.5 80.2

GIN-FSPool 72.1 ±2.0 49.9 ±1.7 89.1 ±1.2 51.8 ±0.9 80.0 ±0.4

- epochs 95 ±70 27 ±23 124 ±64 66 ±31 124 ±56

GIN-Base 71.3 ±1.2 48.8 ±1.7 84.8 ±1.7 48.1 ±2.0 80.3 ±0.4

- epochs 83 ±73 57 ±59 156 ±58 211 ±27 204 ±26

Bioinformatics MUTAG PROTEINS PTC NCI1

Num. graphs 188 1113 344 4110

Num. classes 2 2 2 2

Avg. nodes 17.9 39.1 25.5 29.8

Max. nodes 28 620 109 111

PK [76] 76.0 ±2.7 73.7 ±0.7 59.5 ±2.4 82.5 ±0.5

DCNN [7] 67.0 61.3 56.6 62.6

Patchy-san [77] 92.6 ±4.2 75.9 ±2.8 60.0 ±4.8 78.6 ±1.9

SortPool [112] 85.8 ±1.7 75.5 ±0.9 58.6 ±2.5 74.4 ±0.5

DiffPool [107] – 76.3 – –

WL [90] 84.1 ±1.9 74.7 ±0.5 58.0 ±2.5 85.5 ±0.5

WL* [104] 90.4 75.0 59.9 86.0

GIN-Base* [104] 89.4 76.2 64.6 82.7

GIN-FSPool 85.9 ±2.4 73.8 ±0.9 59.3 ±1.8 79.2 ±0.6

- epochs 299 ±91 69 ±23 214 ±110 361 ±54

GIN-Base 85.0 ±1.5 73.2 ±1.2 59.9 ±2.4 79.4 ±0.6

- epochs 244 ±95 160 ±123 202 ±100 412 ±55

94 5.7. Discussion

of point clouds, we showed that this results in much better reconstruc-

tions. We believe that this is an important step towards set prediction

tasks with more complex set elements. However, because our decoder

uses information from the encoder, it is not easily possible to turn it into

a generative set model, which is the main limitation of our approach.

Still, we �nd that using the auto-encoder to obtain better representa-

tions and pre-trained weights can be bene�cial by itself. We will use

our insights about the responsibility problem to create a model without

the auto-encoder limitation in Chapter 6.

In classi�cation experiments, we also showed that simply replacing the

pooling function in an existing model with FSPool can give us better

results and faster convergence. We showed that FSPool consistently

learns better set representations at a relatively small computational cost,

leading to improved results in the downstream task. Our model thus

has immediate applications in various types of set models that have

traditionally used sum or max pooling. For example, we will use FSPool

in the next chapter (replacing the pooling in a Relation Network) to

improve the quality of the learned representations. It would be useful

to theoretically characterise what types of relations are more easily

expressed by FSPool through an analysis like in Murphy et al. [75]. This

may result in further insights into how to learn better set representations

e�ciently.

95

Chapter 6

Set decoder: Deep set
prediction networks

In the previous chapter, we found that all existing approaches for pre-

dicting sets su�er from the responsibility problem. The solution we

provided there only covered the auto-encoder setting. In this chapter,

we will develop a solution without this restriction: a model that can

predict sets without the responsibility problem in normal supervised

learning tasks.

These contributions have been published as [113] in Advances in Neu-

ral Information Processing Systems 32 (NeurIPS), 2019, and have been

presented at the Sets & Partitions workshop, hosted at the Neural Infor-

mation Processing Systems (NeurIPS) 2019 conference.

6.1 Introduction

You are given a rotation angle and your task is to draw the four corner

points of a square that is rotated by that amount. This is a structured

prediction task where the output is a set, since there is no inherent

ordering to the four points. Such sets are a natural representation for

many kinds of data, ranging from the set of points in a point cloud, to

the set of objects in an image (object detection), to the set of nodes in a

molecular graph (molecular generation). Yet, existing machine learning

models often struggle to solve even the simple square prediction task

as we showed in Section 5.3.

The main di�culty in predicting sets comes from the ability to permute

the elements in a set freely, which means that there are =! equally good

solutions for a set of size =. Models that do not take this set structure

into account properly (such as MLPs or RNNs) result in discontinuities,

which is the reason why they struggle to solve simple toy set prediction

96 6.2. Background

tasks. We quickly review the background on what the problem is in

Section 6.2.

How can we build a model that properly respects the set structure of the

problem so that we can predict sets without running into discontinuity

issues? In this chapter, we aim to address this question. Concretely, we

contribute the following:

1. We propose a model (Section 6.3, Algorithm 6.1) that can predict

a set from a feature vector (vector-to-set) while properly taking

the structure of sets into account. We explain what properties we

make use of that enables this. Our model uses backpropagation

through a set encoder to decode a set and works for variable-size

sets. The model is applicable to a wide variety of set prediction

tasks since it only requires a feature vector as input.

2. We evaluate our model on several set prediction datasets (Sec-

tion 6.5). First, we demonstrate that the auto-encoder version of

our model is sound on a set version of MNIST. Next, we use the

CLEVR dataset to show that this works for general set prediction

tasks. We predict the set of bounding boxes of objects in an im-

age and we predict the set of object attributes in an image, both

from a single feature vector. Our model is a completely di�er-

ent approach to usual anchor-based object detectors because we

pose the task as a set prediction problem, which does not need

complicated post-processing techniques such as non-maximum

suppression.

6.2 Background

Representation We are interested in sets of feature vectors with the

feature vector describing properties of the element, for example the 2d

position of a point in a point cloud. A set of size = wherein each feature

vector has dimensionality3 is represented as a matrix _ ∈ R=×3 with the

elements as rows in an arbitrary order, _ = [~1, . . . ,~=]T. Note that this

representation of sets is transposed compared to Chapter 2 (R=×3 instead

of R3×=) to ease the exposition in this chapter. To properly treat this as

a set, it is important to only apply operations with certain properties to

it [110]: permutation-invariance or permutation-equivariance. In other

words, operations on sets should not rely on the arbitrary ordering of

the elements.

Set encoders (which turn such sets into feature vectors) are usually built

by composing permutation-equivariant operations with a permutation-

invariant operation at the end. A simple example is the Deep Sets model

by Zaheer et al. [110]: 5 (_) = ∑
8 6(~8) where 6 is a neural network.

Chapter 6. Deep set prediction networks 97

Because 6 is applied to every element individually, it does not rely on

the arbitrary order of the elements. We can think of this as turning

the set {~8}=8=1 into {6(~8)}=8=1. This is permutation-equivariant because

changing the order of elements in the input set a�ects the output set

in a predictable way. Next, the set is summed to produce a single

feature vector. Since summing is commutative, the output is the same

regardless of what order the elements are in. In other words, summing

is permutation-invariant. This gives us an encoder that produces the

same feature vector regardless of the arbitrary order the set elements

were stored in.

Loss In set prediction tasks, we need to compute a loss between a

predicted set _̂ = [~̂1, . . . , ~̂=]T and the target set _ . The main problem

is that the elements of each set are in an arbitrary order, so we cannot

simply compute a pointwise distance. The usual solution to this is an

assignment mechanism that matches up elements from one set to the

other set. This gives us a loss function that is permutation-invariant in

both its arguments.

One such loss is the $ (=2) Chamfer loss, which matches up every

element of _̂ to the closest element in _ and vice versa:

!cha(_̂ , _) =
∑
8

min

9

~̂8 −~ 9

2 +∑
9

min

8

~̂8 −~ 9

2 (6.1)

Note that this does not work well for multisets: the loss between [a, a, b],
[a, b, b] is 0. A more sophisticated loss that does not have this problem

involves the linear assignment problem with the pairwise losses as

assignment costs:

!hun(_̂ , _) = min

c ∈Π

~̂8 −~c (8)

2 (6.2)

where Π is the space of permutations, which can be solved with the

Hungarian algorithm in $ (=3) time. This has the bene�t that every

element in one set is associated to exactly one element in the other set,

which is not the case for the Chamfer loss.

Responsibility problem A widely-used approach is to simply ignore

the set structure of the problem. A feature vector can be mapped to a set

_̂ by using an MLP that takes the vector as input and directly produces

_̂ with = × 3 outputs. Since the order of elements in _̂ does not matter,

it appears reasonable to always produce them in a certain order based

on the weights of the MLP.

98 6.2. Model

While this seems like a promising approach, we pointed out Section 5.3

that this results in a discontinuity issue: there are points where a small

change in set space requires a large change in the neural network

outputs. The model needs to “decide” which of its outputs is responsible

for producing which element, and this responsibility must be resolved

discontinuously.

Here, we give a di�erent example to give the intuition behind this prob-

lem. Consider an MLP that detects the colour of two otherwise identical

objects present in an image, so it has two outputs with dimensionality

3 (R, G, B) corresponding to those two colours. We are given an image

with a blue and red object, so let us say that output 1 predicts blue

and output 2 predicts red; perhaps the weights of output 1 are more

attuned to the blue channel and output 2 is more attuned to the red

channel. We are given another image with a blue and green object, so

it is reasonable for output 1 to again predict blue and output 2 to now

predict green. When we now give the model an image with a red and

green object, or two red objects, it is unclear which output should be

responsible for predicting which object. Output 2 “wants” to predict

both red and green, but has to decide between one of them, and output

1 now has to be responsible for the other object while previously being

a blue detector. This responsibility must be resolved discontinuously,

which makes modeling sets with MLPs di�cult.

The main problem is that there is a notion of output 1 and output 2

– an ordered output representation – in the �rst place, which forces

the model to give the set an order. Instead, it would be better if the

outputs of the model were freely interchangeable – in the same way

the elements of the set are interchangeable – to not impose an order on

the outputs. This is exactly what our model accomplishes.

6.3 Deep set prediction networks

This section contains our primary contribution: a model for decoding

a feature vector into a set of feature vectors. As we have previously

established, it is important for the model to properly respect the set

structure of the problem to avoid the responsibility problem.

Our main idea is based on the observation that the gradient of a set

encoder with respect to the input set is permutation-equivariant (see

Subsection 6.3.1): to decode a feature vector into a set, we can use gradient

descent to �nd a set that encodes to that feature vector. Since each

update of the set using the gradient is permutation-equivariant, we

always properly treat it as a set and avoid the responsibility problem.

This gives rise to a nested optimisation: an inner loop that changes a

set to encode more similarly to the input feature vector, and an outer

Chapter 6. Deep set prediction networks 99

Algorithm 6.1 One forward pass of the set prediction algorithm within the training

loop.

1: z = � (G) ⊲ encode input with a model

2: _̂
(0) ← init ⊲ initialise set

3: for t← 1,) do
4: ; ← !repr(_̂

(C−1)
, z) ⊲ compute representation loss

5: _̂
(C) ← _̂

(C−1) − [m;

m ˆ_
(C−1) ⊲ gradient descent step on the set

6: end for
7: predict _̂

())

8: L = 1
)

∑)
C=0 !set(_̂

(C)
, _) + _!repr(_ , z) ⊲ outer optimisation loss

loop that changes the weights of the encoder to minimise a loss over a

dataset.

With this idea in mind, we build up models of increasing usefulness for

predicting sets. We start with the simplest case of auto-encoding �xed-

size sets (Subsection 6.3.2), where a latent representation is decoded

back into a set. This is modi�ed to support variable-size sets, which is

necessary for most sets encountered in the real-world. Lastly and most

importantly, we extend our model to general set prediction tasks where

the input no longer needs to be a set (Subsection 6.3.3). This gives us

a model that can predict a set of feature vectors from a single feature

vector. We give the pseudo-code of this method in Algorithm 6.1.

6.3.1 Proof of permutation-equivariance

Recall de�nitions of permutation-invariance and equivariance:

De�nition 3 A function 5 : R=×3 → R2 is permutation-invariant i�

it satis�es:

5 (^) = 5 (V^) (6.3)

for all permutation matrices V .

De�nition 4 A function 6 : R=×3 → R=×2 is permutation-equivariant

i� it satis�es:

V6(^) = 6(V^) (6.4)

for all permutation matrices V .

The de�nitions here use the transposed set representations to match

the exposition in this chapter. With these de�nitions, we can prove the

following:

100 6.3. Model

Theorem 2 The gradient of a permutation-invariant function 5 :

R=×3 → R2 with respect to its input is permutation-equivariant:

V
m5 (^)
m^

=
m5 (V^)
mV^

(6.5)

Proof. Using De�nition 1, the chain rule, and the orthogonality of V :

V
m5 (^)
m^

= V
m5 (V^)
m^

(6.6)

= V
mV^

m^

m5 (V^)
mV^

(6.7)

= VVT m5 (V^)
mV^

(6.8)

=
m5 (V^)
mV^

(6.9)

�

This property ensures that our model is permutation-equivariant.

6.3.2 Auto-encoding �xed-size sets

In a set auto-encoder, the goal is to turn the input set _ into a small

latent space z = 6enc(_) with the encoder 6enc and turn it back into the

predicted set _̂ = 6dec(z) with the decoder 6dec. Using our main idea,

we de�ne a representation loss and the corresponding decoder as:

!repr(_̂ , z) =

6enc(_̂) − z

2
(6.10)

6dec(z) = arg min

ˆ_

!repr(_̂ , z) (6.11)

In essence, !repr compares _̂ to _ in the latent space. To understand

what the decoder does, �rst consider the simple, albeit not very useful

case of the identity encoder 6enc(_) = _ . Solving 6dec(z) simply means

setting _̂ = _ , which perfectly reconstructs the input as desired.

When we instead choose 6enc to be a set encoder, the latent representa-

tion z is a permutation-invariant feature vector. If this representation is

“good”, _̂ will only encode to similar latent variables as _ if the two sets

themselves are similar. Thus, the minimisation in Equation 6.11 should

still produce a set _̂ that is the same (up to permutation) as _ , except

this has now been achieved with z as a bottleneck.

Since the problem is non-convex when 6enc is a neural network, it is

infeasible to solve Equation 6.11 exactly. Instead, we perform gradient

Chapter 6. Deep set prediction networks 101

MSE MSE

E
n

c
o

d
e
r

E
n

c
o

d
e
r

E
n

c
o

d
e
r

−m MSE

m Step 0

−m MSE

m Step 1

Step 0 Step 1 Step 2 Step 10

Input Target

set loss

. . .

Figure 6.1: Overview of our algorithm for auto-encoding an MNIST set. The initial set at step 0 is

iteratively re�ned, at each step improving the current prediction.

descent to approximate a solution. Starting from some initial set _̂
(0)

,

gradient descent is performed for a �xed number of steps) with the

update rule:

_̂
(C+1)

= _̂
(C) − [·

m!repr(_̂
(C)
, z)

m_̂
(C) (6.12)

with [as the learning rate and the prediction being the �nal state,

6dec(z) = _̂
())

. This is the aforementioned inner optimisation loop. In

practice, we let _̂
(0)

be a learnable R3×= matrix which is part of the

neural network parameters.

To obtain a good representation z, we still have to train the weights

of 6enc. For this, we compute the auto-encoder objective !set(_̂
())
, _) –

with !set = !cha or !hun – and di�erentiate with respect to the weights

as usual, backpropagating through the steps of the inner optimisation.

This is the aforementioned outer optimisation loop.

In summary, each forward pass of our auto-encoder �rst encodes the

input set to a latent representation as normal. To decode this back

into a set, gradient descent is performed on an initial guess with the

aim to obtain a set that encodes to the same latent representation as

the input. The same set encoder is used in the encoding and decoding

stages.

Variable-size sets To extend this from �xed- to variable-size sets, we

make a few modi�cations to this algorithm. First, we pad all sets to a

�xed maximum size to allow for e�cient batch computation. We then

concatenate an additional mask feature<8 to each set element ~̂8 that

indicates whether it is a regular element (<8 = 1) or padding (<8 = 0).

With this modi�cation to _̂ , we can optimise the masks in the same

way as the set elements are optimised. To ensure that masks stay in the

valid range between 0 and 1, we simply clamp values above 1 to 1 and

102 6.3. Model

MSE

MSE loss

R
e
s
N

e
t
3
4

E
n

c
o

d
e
r

E
n

c
o

d
e
r

−m MSE

m Step 0

Step 0 Step 1 Step 10

Input Target

set loss

. . .

Figure 6.2: Overview of DSPN for supervised prediction. The main di�erence is the MSE loss

between the input encoding and target encoding.

values below 0 to 0 after each gradient descent step. This performed

better than using a sigmoid in our initial experiments, possibly because

it allows exact 0s and 1s to be recovered.

6.3.3 Predicting sets from a feature vector

In our auto-encoder, we used an encoder to produce both the latent

representation as well as to decode the set. This is no longer possible in

the general set prediction setup, since the target representation z can

come from a separate model (for example an image encoder � encoding

an image x), so there is no longer a set encoder in the model.

When naïvely using z = � (x) as input to our decoder, our decoding

process is unable to predict sets correctly from it. Because the set

encoder is no longer shared in our set decoder, there is no guarantee that

optimising 6enc(_̂) to match z converges towards _ (or a permutation

thereof). To �x this, we simply add a term to the loss of the outer

optimisation that encourages 6enc(_) ≈ z again. In other words, the

target set should have a very low representation loss itself. This gives

us an additional !repr term in the loss function of the outer optimisation

for supervised learning:

L = !set(_̂ , _) + _!repr(_ , z) (6.13)

with !set being either !cha or !hun. With this, minimising !repr(_̂ , z) in

the inner optimisation will converge towards _ . The additional term

is not necessary in the pure auto-encoder because z = 6enc(_), so

!repr(_ , z) is always 0 already.

Chapter 6. Deep set prediction networks 103

Practical tricks For the outer optimisation, we can compute the

set loss for not only _̂
())

, but all _̂
(C)

. That is, we use the average

set loss
1
)

∑
C !set(_̂

(C)
, _) as loss (similar to Belanger et al. [13]). This

encourages _̂ to converge to _ quickly and not diverge with more steps,

which signi�cantly increases the robustness of our algorithm.

We sometimes observed divergent training behaviour when the outer

learning rate is set inappropriately. By replacing the instances of ‖·‖2

in !set and !repr with the Huber loss (squared error for di�erences be-

low 1 and absolute error above 1) – as is commonly done in object

detection models – training became less sensitive to hyperparameter

choices.

The inner optimisation can be modi�ed to include a momentum term,

which stops a prediction from oscillating around a solution. This gives

us slightly better results, but we did not use this for any experiments to

keep our method as simple as possible.

It is possible to explicitly include the sum of masks as a feature in the

representation z for our model. This improves our results on MNIST –

likely due to the explicit signal for the model to predict the correct set

size – but again, we do not use this for simplicity.

6.4 Related work

The main approach we compare our method to is the simple method of

using an MLP decoder to predict sets. This has been used for predicting

point clouds [1, 29], bounding boxes [86, 11], and graphs (sets of nodes

and edges) [19, 92]. These predict an ordered representation (list) and

treat it as if it is unordered (set). As we discussed in Section 6.2, this ap-

proach runs into the responsibility problem. Some works on predicting

3d point clouds make domain-speci�c assumptions such as indepen-

dence of points within a set [66] or grid-like structures [105].

An alternative approach is to use an RNN decoder to generate this

list [67, 95, 100]. The problem can be made easier if it can be turned

from a set into a sequence problem by giving a canonical order to the

elements in the set through domain knowledge [100]. For example, You

et al. [108] generate the nodes of a graph by ordering the set of nodes

based on the node traversal order of a breadth-�rst search.

The closest work to ours is by Mordatch [74]. They also iteratively

minimise a function (their energy function) in each forward pass of

the neural network and di�erentiate through the iteration to learn the

weights. They have only demonstrated that this works for modifying

small sets of 2d elements in relatively simple ways, so it is unclear

whether their approach scales to the harder problems such as object

104 6.4. Related work

detection that we tackle in this chapter. In particular, minimising !repr

in our model has the easy-to-understand consequence of making the

predicted set more similar to the target set, while it is less clear what

minimising their learned energy function � (_̂ , z) does.

In Chapter 5, we constructed an auto-encoder that pools a set into a

feature vector where information from the encoder is shared with their

decoder. This is done to make the decoder permutation-equivariant,

which we used to avoid the responsibility problem. However, this

strictly limits the decoder to usage in auto-encoders – not set prediction

– because it requires an encoder to be present during inference.

Gre� et al. [38] construct an auto-encoder for images with a latent

space that is set-structured. They are able to �nd latent sets of variables

to describe an image composed of a set of objects with some task-

speci�c assumptions. While interesting from a representation learning

perspective, our model is immediately useful in practice because it

works for general supervised learning tasks.

Our inspiration for using backpropagation through an encoder as a

decoder comes from the line of introspective neural networks [61, 64]

for image modeling. An important di�erence is that in these works,

the two optimisation loops (generating predictions and learning the

network weights) are performed in sequence, while ours are nested.

The nesting allows our outer optimisation to di�erentiate through the

inner optimisation. This type of nested optimisation to obtain structured

outputs with neural networks was �rst studied by Belanger et al. [12, 13],

of which our model can be considered an instance of. Note that Gre� et

al. [38] and Mordatch [74] also di�erentiate through an optimisation,

which suggests that this approach is of general bene�t when working

with sets.

It is important to clearly separate the vector-to-set setting in this chapter

from some related works on set-to-set mappings, such as the equivariant

version of Deep Sets [110] and self-attention [99]. Tasks like object

detection, where no set input is available, can not be solved with set-

to-set methods alone; the feature vector from the image encoder has to

be turned into a set �rst, for which a vector-to-set model like ours is

necessary. Set-to-set methods do not have to deal with the responsibility

problem, because the output usually has the same ordering as the input.

Methods like the one in Mena et al. [70] and our method in Chapter 4

learn to predict a permutation matrix for a set (set-to-set-of-position-

assignments). When this permutation is applied to the input set, the set

is turned into a list (set-to-list). Again, our model is about producing a

set as output while not necessarily taking a set as input.

Chapter 6. Deep set prediction networks 105

6.5 Experiments

In the following experiments, we compare our set prediction network

to a model that uses an MLP or RNN (LSTM) as set decoder. In all

experiments, we �x the hyperparameters of our model to) = 10, [=

800, _ = 0.1. Further details about the model architectures, training

settings, and hyperparameters are given in Section A.4. We provide

the PyTorch [81] source code to reproduce all experiments at https:

//github.com/Cyanogenoid/dspn.

6.5.1 MNIST

We begin with the task of auto-encoding a set version of MNIST. A set

is constructed from each image by including all the pixel coordinates (x

and y, scaled to the interval [0, 1]) of pixels that have a value above the

mean pixel value. The size of these sets varies from 32 to 342 across the

dataset.

Model In our model, we use a set encoder that processes each element

individually with a 3-layer MLP, followed by FSPool (Chapter 5) as

pooling function to produce 256 latent variables. These are decoded

with our algorithm to predict the input set. We compare this against a

baseline model with the same encoder, but with a traditional MLP or

LSTM as decoder. This approach to decoding sets is used in models such

as in Achlioptas et al. [1] (AE-CD variant) and Stewart et al. [95]; these

baselines are representative of the best approaches for set prediction

in the literature. Note that these baselines have signi�cantly more

parameters than our model, since our decoder has almost no additional

parameters by sharing the encoder weights (ours: ∼140 000 parameters,

MLP: ∼530 000, LSTM: ∼470 000). For the baselines, we include a mask

feature with each element to allow for variable-size sets. Due to the

large maximum set size, use of Hungarian matching is too slow. Instead,

we use the Chamfer loss to compute the loss between predicted and

target set in this experiment.

Results Table 6.1 shows that our model improves over the two base-

lines. In Figure 6.3 and Figure 6.4, we show the progression of _̂ through-

out the minimisation with _̂
(10)

as the �nal prediction, the ground-truth

set, and the baseline prediction of an MLP decoder. Observe how every

optimisation starts with the same set _̂
(0)

, but is transformed di�erently

depending on the gradient of 6enc. Through this minimisation of !repr

by the inner optimisaton, the set is gradually changed into a shape that

closely resembles the correct digit.

The types of errors of our model and the baseline are di�erent, despite

the use of models with similar losses in Figure 6.3. Errors in our model

https://github.com/Cyanogenoid/dspn
https://github.com/Cyanogenoid/dspn

106 6.5. Experiments

Ŷ (0) Ŷ (1) Ŷ (2) Ŷ (3) Ŷ (4) Ŷ (5) Ŷ (6) Ŷ (7) Ŷ (8) Ŷ (9) Ŷ (10) Target Y Baseline

Figure 6.3: Progression of set prediction algorithm on MNIST (_̂
(C)

). Our predictions come from

our model with 0.08× 10−3 loss, while the baseline predictions come from an MLP decoder model

with 0.09 × 10−3 loss.

Table 6.1: Chamfer reconstruction loss on MNIST in 1000ths. Lower is better. Mean and standard

deviation over 6 runs.

Model Loss

MLP baseline 0.21±0.18

RNN baseline 0.49±0.19

Ours 0.09±0.01

are mostly due to scattered points outside of the main shape of the digit,

which is particularly visible in the third row. We believe that this is due

to the limits of the encoder used: an encoder that is not powerful enough

maps the slightly di�erent sets to the same representation, so there is no

!repr gradient to work with. It still models the general shape accurately,

but misses the �ne details of these scattered points. The MLP decoder

has less of this scattering, but makes mistakes in the shape of the digit

instead. For example, in the third row, the baseline has a di�erent curve

at the top and a shorter line at the bottom. This di�erence in types of

errors is also present in the extended examples in Figure 6.4.

Note that reconstructions shown in (Subsection 5.6.2) for the same auto-

encoding task appear better because the decoder there uses additional

information outside of the latent space: multiple = × = matrices are

copied from the encoder into the decoder. In contrast, all information

about the set is completely contained in our permutation-invariant

latent space.

6.5.2 Bounding box prediction

Next, we turn to the task of object detection on the CLEVR dataset [52],

which contains 70,000 training and 15,000 validation images. The goal

is to predict the set of bounding boxes for the objects in an image. The

target set contains at most 10 elements with 4 dimensions each: the (nor-

malised) x-y coordinates of the top-left and bottom-right corners of each

Chapter 6. Deep set prediction networks 107

Ŷ (0) Ŷ (1) Ŷ (2) Ŷ (3) Ŷ (4) Ŷ (5) Ŷ (6) Ŷ (7) Ŷ (8) Ŷ (9) Ŷ (10) Target Y Baseline

Figure 6.4: Progression of set prediction algorithm on MNIST.

108 6.5. Experiments

box. As the dataset does not contain bounding box information canon-

ically, we use the processing method by Desta et al. [27] to calculate

approximate bounding boxes. This causes the ground-truth bounding

boxes to not always be perfect, which is a source of noise.

Model We encode the image with a ResNet34 [41] into a 512d feature

vector, which is fed into the set decoder. The set decoder predicts the set

of bounding boxes from this single feature vector describing the whole

image. This is in contrast to existing region proposal networks [85]

for bounding box prediction where the use of the entire feature map is

required for the typical anchor-based approach. As the set encoder in our

model, we use a 2-layer relation network [88] with FSPool (Chapter 5)

as pooling. This is stronger than the FSPool-only model (without RN)

we used in the MNIST experiment. We again compare this against

a baseline that uses an MLP or LSTM as set decoder (matching AE-

EMD [1] and [86] for the MLP decoder, [95] for the LSTM decoder).

Since the sets are much smaller compared to our MNIST experiments, we

can use the Hungarian loss as set loss. We perform no post-processing

(such as non-maximum suppression) on the predictions of the model.

The whole model is trained end-to-end.

Results We show our results in Table 6.2 using the standard average

precision (AP) metric used in object detection with sample predictions

in Figure 6.5 and Figure 6.6. Our model is able to very accurately localise

the objects with high AP scores even when the intersection-over-union

(IoU) threshold for a predicted box to match a ground truth box is very

strict. In particular, our model using 10 iterations (the same it was

trained with) has much better AP95 and AP98 than the baselines. The

shown baseline model can predict bounding boxes in the close vicinity

of objects, but fails to place the bounding box precisely on the object.

This is visible from the decent performance for low IoU thresholds, but

bad performance for high IoU thresholds.

We can also run our model with more inner optimisation steps than

the 10 it was trained with. Many results improve when doubling the

number of steps, which shows that further minimisation of !repr(_̂ , z) is

still bene�cial, even if it is unseen during training. The model “knows”

that its prediction is still suboptimal when !repr is high and also how

to change the set to decrease it. This con�rms that the optimisation is

reasonably stable and does not diverge signi�cantly with more steps.

Being able to change the number of steps allows for a dynamic trade-o�

between prediction quality and inference time depending on what is

needed for a given task.

Chapter 6. Deep set prediction networks 109

Ŷ (0) Ŷ (5) Ŷ (10) Ŷ (20) True Y Baseline

Figure 6.5: Progression of set prediction algorithm for bounding boxes in CLEVR. The shown

MLP baseline sometimes struggles with heavily-overlapping objects and often fails to centre the

object in the boxes.

Table 6.2: Average Precision (AP) for di�erent intersection-over-union thresholds for a predicted

bounding box to be considered correct. Higher is better. Mean and standard deviation over 6 runs.

Model AP50 AP90 AP95 AP98 AP99

MLP baseline 99.3±0.2 94.0±1.9 57.9±7.9 0.7±0.2 0.0±0.0

RNN baseline 99.4±0.2 94.9±2.0 65.0±10.3 2.4±0.0 0.0±0.0

Ours (10 iters) 98.8±0.3 94.3±1.5 85.7±3.0 34.5±5.7 2.9±1.2

Ours (20 iters) 99.8±0.0 98.7±1.1 86.2±7.2 24.3±8.0 1.4±0.9

Ours (30 iters) 99.8±0.1 96.7±2.4 75.5±12.3 17.4±7.7 0.9±0.7

Table 6.3: Ablation experiments with DSPN-RN-Sum (standard RN model) and DSPN-RN-Max.

The DSPN-RN-FSPool results are the same as in the previous table.

Model AP50 AP90 AP95 AP98 AP99

DSPN-RN-FSPool (10 iters) 98.8±0.3 94.3±1.5 85.7±3.0 34.5±5.7 2.9±1.2

DSPN-RN-FSPool (20 iters) 99.8±0.0 98.7±1.1 86.2±7.2 24.3±8.0 1.4±0.9

DSPN-RN-FSPool (30 iters) 99.8±0.1 96.7±2.4 75.5±12.3 17.4±7.7 0.9±0.7

DSPN-RN-Sum (10 iters) 88.3±3.7 43.4±14.4 10.0±7.4 0.1±0.1 0.0±0.0

DSPN-RN-Sum (20 iters) 87.2±3.0 42.9±11.9 5.7±3.5 0.0±0.0 0.0±0.0

DSPN-RN-Sum (30 iters) 79.0±11.9 32.5±12.4 3.4±2.2 0.0±0.0 0.0±0.0

DSPN-RN-Max (10 iters) 68.0±4.3 4.0±2.2 0.1±0.1 0.0±0.0 0.0±0.0

DSPN-RN-Max (20 iters) 66.6±4.5 3.3±1.8 0.1±0.0 0.0±0.0 0.0±0.0

DSPN-RN-Max (30 iters) 64.1±5.0 2.3±1.1 0.0±0.0 0.0±0.0 0.0±0.0

110 6.5. Experiments

Ŷ (0) Ŷ (5) Ŷ (10) Ŷ (20) True Y Baseline

Figure 6.6: Progression of set prediction algorithm on CLEVR bounding boxes.

Chapter 6. Deep set prediction networks 111

The less-strict AP metrics (which measure large mistakes) improve with

more iterations, while the very strict AP98 and AP99 metrics consistently

worsen. This is a sign that the inner optimisation learned to reach its

best prediction at exactly 10 steps, but slightly overshoots when run

for longer. The model has learned that it does not fully converge with

10 steps, so it is compensating for that by slightly biasing the inner

optimisation to get a better 10 step prediction. This is at the expense of

the strictest AP metrics worsening with 20 steps, where this bias is not

necessary anymore.

We also perform an ablation experiment where we replace FSPool in

the encoder with sum or max pooling. The results in Table 6.3 show

that using FSPool greatly bene�ts our algorithm, likely due to the better

representation that it is able to learn. The representation of the DSPN-

RN-FSPool model is good enough that iterating our algorithm for more

steps than the model was trained with can bene�t the prediction, while

for the baselines it generally only worsens.

Bear in mind that we do not intend to directly compete against tradi-

tional object detection methods. Our goal is to demonstrate that our

model can accurately predict a set from a single feature vector, which is

of general use for set prediction tasks not limited to image inputs.

6.5.3 Object attribute prediction

Lastly, we want to directly predict the full state of a scene from images

on CLEVR. This is the set of objects with their position in the 3d scene

(G~I coordinates), shape (sphere, cylinder, cube), colour (eight colours),

size (small, large), and material (metal/shiny, rubber/matte) as features.

For example, an object can be a “small cyan metal cube” at position (0.95,

-2.83, 0.35). We encode the categorial features as one-hot vectors and

concatenate them into an 18d feature vector for each object. Note that

we do not use bounding box information, so the model has to implicitly

learn which object in the image corresponds to which set element with

the associated properties. This makes it di�erent from usual object

detection tasks, since bounding boxes are required for traditional object

detection models that rely on anchors.

Model We use exactly the same model as for the bounding box pre-

diction in the previous experiment with all hyperparameters kept the

same. The only di�erence is that it now outputs 18d instead of 4d set

elements. For simplicity, we continue using the Hungarian loss with the

Huber loss as pairwise cost, as opposed to switching to cross-entropy

for the categorical features.

112 6.5. Experiments

Table 6.4: Average Precision (AP) in % for di�erent distance thresholds of a predicted set element

to be considered correct. AP∞ only requires all attributes to be correct, regardless of 3d position.

Higher is better. Mean and standard deviation over 6 runs.

Model AP∞ AP1 AP0.5 AP0.25 AP0.125

MLP baseline 3.6±0.5 1.5±0.4 0.8±0.3 0.2±0.1 0.0±0.0

RNN baseline 4.0±1.9 1.8±1.2 0.9±0.5 0.2±0.1 0.0±0.0

Ours (10 iters) 72.8±2.3 59.2±2.8 39.0±4.4 12.4±2.5 1.3±0.4

Ours (20 iters) 84.0±4.5 80.0±4.9 57.0±12.1 16.6±9.0 1.6±0.9

Ours (30 iters) 85.2±4.8 81.1±5.2 47.4±17.6 10.8±9.0 0.6±0.7

Table 6.5: Average Precision (AP, mean ± stdev) for di�erent distance thresholds of the predicted

state descriptions over 6 runs. All results are worse than the DSPN-RN-FSPool in the previous

table. The DSPN-RN-FSPool results are the same as in the previous table.

Model AP∞ AP1 AP0.5 AP0.25 AP0.125

DSPN-RN-FSPool (10 iters) 72.8±2.3 59.2±2.8 39.0±4.4 12.4±2.5 1.3±0.4

DSPN-RN-FSPool (20 iters) 84.0±4.5 80.0±4.9 57.0±12.1 16.6±9.0 1.6±0.9

DSPN-RN-FSPool (30 iters) 85.2±4.8 81.1±5.2 47.4±17.6 10.8±9.0 0.6±0.7

DSPN-RN-Sum (10 iters) 44.6±3.8 21.9±4.8 7.1±2.7 1.0±0.5 0.0±0.0

DSPN-RN-Sum (20 iters) 39.6±5.4 15.2±6.4 3.0±2.2 0.3±0.3 0.0±0.0

DSPN-RN-Sum (30 iters) 30.2±9.2 7.1±3.8 0.9±0.8 0.1±0.1 0.0±0.0

DSPN-RN-Max (10 iters) 3.0±0.2 0.9±0.1 0.5±0.2 0.1±0.1 0.0±0.0

DSPN-RN-Max (20 iters) 3.1±0.1 1.2±0.1 0.8±0.2 0.3±0.2 0.0±0.0

DSPN-RN-Max (30 iters) 3.1±0.1 1.2±0.1 0.9±0.2 0.3±0.2 0.0±0.0

Results We show our results in Table 6.4 and give sample outputs

in Table 6.6. The evaluation metric is the standard average precision

as used in object detection, with the modi�cation that a prediction

is considered correct if there is a matching groundtruth object with

exactly the same properties and within a given Euclidean distance of

the 3d coordinates. Our model clearly outperforms the baselines. This

shows that our model is also suitable for modeling high-dimensional

set elements.

When evaluating with more steps than our model was trained with, the

di�erence in the more lenient metrics improves even up to 30 iterations.

This time, the results for 20 iterations are all better than for 10 itera-

tions. This suggests that 10 steps is too few to reach a good solution

in training, likely due to the higher di�culty of this task compared to

the bounding box prediction. Still, the representation z that the input

encoder produces is good enough such that minimising !repr more at

evaluation time leads to better results. When going up to 30 iterations,

the result for predicting the state only (excluding 3d position) improves

further, but the accuracy of the 3d position worsens. We believe that this

is again caused by overshooting the target due to the bias of training

the model with only 10 iterations.

Chapter 6. Deep set prediction networks 113

Table 6.6: Progression of set prediction algorithm on CLEVR state prediction. Red text denotes

a wrong attribute. Objects are sorted by x coordinate, so they are sometimes misaligned with

wrongly-coloured red text (see third example: red entries in _̂
(20)

).

ˆ_
(5)

ˆ_
(10)

ˆ_
(20)

True _ Baseline

(-0.14, 1.16, 3.57) (-2.33, -2.41, 0.73) (-2.33, -2.42, 0.78) (-2.42, -2.40, 0.70) (-1.65, -2.85, 0.69)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube large yellow metal cube

(0.01, 0.12, 3.42) (-1.20, 1.27, 0.67) (-1.21, 1.20, 0.65) (-1.18, 1.25, 0.70) (-0.95, 1.08, 0.68)

large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere large green rubber sphere

(0.67, 0.65, 3.38) (-0.96, 2.54, 0.36) (-0.96, 2.59, 0.36) (-1.02, 2.61, 0.35) (-0.40, 2.14, 0.35)

small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere small red rubber sphere

(0.67, 1.14, 2.96) (1.61, 1.57, 0.36) (1.58, 1.62, 0.38) (1.74, 1.53, 0.35) (1.68, 1.77, 0.35)

small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube small brown metal cube

ˆ_
(5)

ˆ_
(10)

ˆ_
(20)

True _ Baseline

(-0.29, 1.14, 3.73) (-2.78, 0.86, 0.72) (-2.62, 0.83, 0.68) (-2.88, 0.78, 0.70) (-2.42, 0.63, 0.71)

small purple metal cube large cyan rubber sphere large cyan rubber sphere large cyan rubber sphere large purple rubber sphere

(-0.11, -0.37, 3.65) (-2.17, -1.59, 0.38) (-2.12, -1.58, 0.49) (-2.14, -1.63, 0.35) (-2.40, -2.07, 0.35)

small brown metal cube small blue rubber cylinder small blue rubber cylinder small blue rubber cylinder small green rubber cylinder

(0.08, 0.56, 3.84) (-0.45, 2.19, 0.40) (-0.60, 2.23, 0.29) (-0.78, 1.97, 0.35) (-0.74, 2.46, 0.33)

large cyan rubber cube small purple metal cube small purple metal cube small purple metal cube small cyan metal cube

(0.69, -0.43, 3.55) (-0.14, -2.15, 0.38) (-0.30, -1.99, 0.32) (-0.38, -2.06, 0.35) (0.30, -1.86, 0.34)

small brown rubber sphere small yellow metal cube small yellow metal cube small yellow metal cube small gray rubber sphere

(1.12, 0.21, 3.83) (0.53, 2.56, 0.70) (0.27, 2.46, 0.72) (0.42, 2.56, 0.70) (0.69, -2.10, 0.36)

large cyan rubber cube large green rubber sphere large green rubber sphere large green rubber sphere small red metal cube

(1.23, -0.25, 3.58) (0.93, -1.41, 0.35) (0.86, -1.31, 0.27) (0.81, -1.30, 0.35) (1.12, 2.28, 0.70)

small cyan rubber sphere small cyan rubber sphere small cyan rubber sphere small cyan rubber sphere large cyan rubber sphere

(1.73, 1.04, 3.57) (2.50, -2.08, 0.76) (2.64, -2.05, 0.76) (2.56, -1.94, 0.70) (2.55, -2.26, 0.73)

small cyan rubber sphere large cyan rubber cube large cyan rubber cube large cyan rubber cube large yellow rubber cube

(2.06, 1.94, 3.81) (2.61, 2.59, 0.33) (2.75, 2.73, 0.35) (2.74, 2.64, 0.35) (2.99, 2.59, 0.35)

large brown rubber sphere small green rubber sphere small green rubber sphere small green rubber sphere small purple rubber sphere

ˆ_
(5)

ˆ_
(10)

ˆ_
(20)

True _ Baseline

(0.22, 0.12, 3.47) (-2.76, -1.42, 0.68) (-2.68, -1.64, 0.77) (-2.62, -1.76, 0.70) (-2.47, -1.73, 0.70)

small brown rubber cube large blue metal cylinder large blue metal cylinder large blue metal cylinder large cyan metal cylinder

(0.41, 0.11, 3.77) (-1.56, -0.61, 0.35) (-2.43, 0.03, 0.34) (-2.29, 0.49, 0.35) (-2.42, 0.09, 0.36)

large gray metal cube small blue rubber cylinder small blue rubber cube small blue rubber cube small blue rubber cylinder

(0.50, 0.44, 3.61) (-1.08, 0.23, 0.33) (-1.00, 1.18, 0.33) (-0.93, 1.15, 0.35) (-1.24, 1.16, 0.36)

small gray rubber cube small green rubber cube small red rubber cylinder small red rubber cylinder small red rubber cube

(0.83, 0.53, 3.45) (-0.07, 0.97, 0.36) (-0.01, -1.00, 0.46) (0.28, -2.84, 0.35) (0.39, 0.20, 0.33)

small cyan rubber sphere small green rubber cylinder small green rubber cube small cyan rubber cylinder small red rubber sphere

(0.86, 0.85, 3.50) (0.28, -2.44, 0.49) (0.21, -2.88, 0.40) (0.29, -0.98, 0.35) (0.56, -3.11, 0.35)

small gray rubber sphere small cyan rubber cylinder small cyan rubber cylinder small green rubber cube small yellow rubber cylinder

(1.86, 2.34, 3.80) (1.36, -0.63, 0.38) (0.99, 0.17, 0.37) (0.92, 0.54, 0.35) (0.90, 0.64, 0.35)

large gray metal cube small green rubber sphere small green rubber sphere small green rubber sphere small green rubber sphere

(1.97, 0.55, 3.61) (2.01, 3.07, 0.65) (1.97, 2.89, 0.39) (2.04, 2.78, 0.70) (2.39, 0.27, 0.36)

small green rubber sphere large gray metal cube large gray metal cube large gray metal cube small yellow rubber sphere

(2.69, 0.63, 0.34) (2.87, 0.51, 0.25) (2.70, 0.67, 0.35) (2.44, 2.55, 0.68)

small yellow rubber sphere small yellow rubber sphere small yellow rubber sphere large gray metal cube

114 6.6. Discussion

The results of the ablation experiment where we replace FSPool in the

encoder with sum or max pooling are shown in Table 6.5. This time,

the di�erence between FSPool and the other encoders is even larger

than for the bounding box experiments. These results con�rm that a

better set encoder leads to better prediction results. They also show

that a way to improve RNs is to simply replace the sum pooling with

FSPool.

6.6 Discussion

In this chapter we showed how to predict sets with a deep neural

network in a way that respects the set structure of the problem. We

demonstrated in our experiments that this works for small (size 10) and

large sets (up to size 342), as well as low-dimensional (2d) and higher-

dimensional (18d) set elements. Our model is consistently better than

the baselines across all experiments by predicting sets properly, rather

than predicting a list and pretending that it is a set.

The improved results of our approach come at a higher computational

cost. Each evaluation of the network requires time for $ ()) passes

through the set encoder, which makes training take about 75% longer on

CLEVR with) = 10. Keep in mind that this only involves the set encoder

(which can be fairly small), not the input encoder (such as a CNN or

RNN) that produces the target z. Further study into representationally-

powerful and e�cient set encoders such as RN [88] and FSPool (Chap-

ter 5) – which we found to be critical for good results in our exper-

iments – would be of considerable interest, as it could speed up the

convergence and thus inference time of our method. Another promising

approach is to better initialise . (0) – perhaps with an MLP – so that the

set needs to be changed less to minimise !repr. Our model would act as

a set-aware re�nement method of the MLP prediction. Lastly, stopping

criteria other than iterating for a �xed 10 steps can be used, such as

stopping when !repr(6enc(_̂), z) is below a �xed threshold: this would

stop when the encoder thinks _̂ is of a certain quality corresponding to

that threshold.

Our algorithm may be suitable for generating samples under other

invariance properties. For example, we may want to generate images of

objects where the rotation of the object does not matter (such as aerial

images). Using our decoding algorithm with a rotation-invariant image

encoder could predict images without forcing the model to choose a �xed

orientation of the image, which could be a useful inductive bias.

In conclusion, we are excited about enabling a wider variety of set pre-

diction problems to be tackled with deep neural networks. Our main

Chapter 6. Deep set prediction networks 115

idea should be readily extensible to similar domains such as graphs to al-

low for better graph prediction, for example molecular graph generation

or end-to-end scene graph prediction from images. We hope that our

model inspires further research into graph generation, stronger object

detection models, and – more generally – a more principled approach

to set prediction.

116 6.6. Discussion

117

Chapter 7

Future work

In this thesis, we have developed a variety of techniques for modeling

sets with deep neural networks. All of our proposed methods are fully

di�erentiable, which makes them readily usable in existing and new

neural networks for sets.

Starting from our initial work on the specialised task of counting object

proposals in visual question answering (Chapter 3), we developed two

building blocks for set encoders and two building blocks for set decoders.

Our set encoders tackle the bottleneck problem (Subsection 2.3.3) of

traditional approaches, which only use simple pooling functions like

sum and max pooling. By learning how to permute the set elements

with the Permutation-optimisation module (Chapter 4) or sorting the

features within a set independently with FSPool (Chapter 5), the set is

turned into an ordered representation, which is much easier to work

with.

In Chapter 5, we also realised that existing approaches for predicting

sets su�er from a responsibility problem (Section 5.3), which forces a

set decoder to predict discontinuous outputs. Since we show that this

can majorly hinder successful learning (Subsection 5.6.1), we tried to

�nd ways to avoid this problem. We �rst did this through FSUnpool

in the limited auto-encoder setting, then through Deep Set Prediction

Networks (DSPN) in the much more general supervised prediction

setting (Chapter 6). This is perhaps the most signi�cant contribution

of this thesis, since it is the �rst model for predicting sets that has the

right properties for sets while being able to scale to complex tasks like

object detection.

Of course, many open problems remain in the area of set encoders and

set decoders, which we discuss in Section 7.1 and Section 7.2. Last but

not least, we discuss the potential of latent sets (Section 7.3), which we

would have loved to work on.

118 7.1. Set encoders

7.1 Set encoders

A better encoder can learn better representations and therefore should

also result in better performance for the downstream task. This can

even extend to improvements to set prediction through DSPN. Recent

progress in set encoders has been closely linked to better modeling of

relationships between set elements and we believe that this will continue

to play an important role. Due to the similarity between the domains of

sets and graphs, improvements in either area are easily transferable, so

researchers in either �eld should be closely aware of the other.

The permutation-invariant step We have primarily used the idea

of ordering the set in some way in Chapter 4 and Chapter 5. There may

be other algorithms similar to sorting that are able to turn a set into a

list in a way that is easy to learn from. An important consideration is the

trade-o� between the complexity of relationships within the set that can

be modeled and the computational e�ciency of that method. Developing

new set pooling methods with di�erent trade-o�s and theoretically

characterising the limitations like in Murphy et al. [75], Xu et al. [104],

and Wagsta� et al. [102] are therefore both useful.

The permutation-equivariant step We have explored various equi-

variant approaches in this thesis: the FSPool-FSUnpool combination

(Chapter 5) and backpropagating through a set encoder (Chapter 6).

While we used them in the context of predicting sets, it would be in-

teresting to see how well these work as a building block in a pure set

encoder or in per-element set prediction tasks.

What about other permutation-equivariant ways to propagate infor-

mation within the set? A recent major advance is the building block

of self-attention in set transformers [99], which has been successfully

used in contexts other than sets such as language modeling. Here, the

same trade-o� between complexity of relations and e�ciency exists.

Methods that strike a good balance between the two are needed, and

gaining deeper theoretical understanding of this balance may help in

this regard.

Applications As we have pointed out in Section 2.5, various models

that already use a sum or max – such as pooling in CNNs – allow for

set methods to be used as an alternative. In those cases, lessons from

the set literature can be applied to understand the existing models and

potentially improve them.

For language modeling, set transformers have the bene�t over tradi-

tional sequential models of being able to e�ciently model long-distance

relationships (words that are far apart). To not lose information about

Chapter 7. Future work 119

the order of the words in a sentence when going from the sequence of

words to the set of words, the words are augmented with positional

information. In essence, the existing sequence problem is transformed

into an equivalent set problem. Due to the versatility of thinking about

problems in terms of sets, there is potential in transforming other prob-

lems into sets and using set-based approaches on them.

7.2 Set decoders

Predicting sets in new ways is an especially promising direction due to

our contributions of the responsibility problem, FSPool-FSUnpool, and

DSPN. One option is to make improvements to our DPSN algorithm

like the ones we suggest in Section 6.6. There are also various other

research directions for set decoders.

Set losses While the Hungarian loss seems ideal from an optimal

transport standpoint, the computational complexity of Θ(=3) is not

good enough for large sets. Alternatives like Sinkhorn-based meth-

ods [34] or something else entirely [11] could prove to be just as good in

terms of quality while being much faster and more easily parallelisable.

There is also potential in the use of k-dimensional (k-d) trees to reduce

computation. This would allow for prediction of much larger sets and

thus greater applicability of set decoders.

Other approaches We argued throughout the thesis that it is impor-

tant to avoid the responsibility problem. While we showed one solution

with our DSPN model and its iterative optimisation approach, other

ways to avoid it may exist. One potential direction is to �nd a more

lightweight method than backpropagating through a set encoder to de-

termine the update to the set, perhaps with a self-attentive decoder [99,

14]. It would also be interesting to �nd a non-iterative approach, since

the iteration is a core component of DSPN.

7.2.1 Applications

There are a variety of existing tasks in machine learning where the

output is a set, but none of the models for the task treat it as a set

prediction problem. This is particularly evident in Computer Vision

with tasks like object detection, instance segmentation, and multi-object

tracking. All of these share the commonality of being about multiple

objects, for which a set would be ideal. Models with good performances

on these tasks exist, but they usually rely on various post-processing

heuristics like thresholding and non-maximum suppression to produce

a set of outputs. By using a proper model for predicting sets like our

DSPN, results in these tasks can potentially be greatly improved.

120 7.2. Set decoders

Object detection Of course, this is not without its challenges. We

will take the Faster R-CNN [85] as representative example of traditional

object detectors. Our DSPN model does not make any assumptions

about its input feature vector, while Faster R-CNN assumes that the

input feature map comes from an image encoder. While this has the

bene�t of DSPN being applicable to non-image tasks, it also means that

DSPN makes global predictions: the existence of an object in one corner

of an image can a�ect the entire feature vector and therefore how a

di�erent object is predicted in a di�erent corner. This is something

that is often undesirable. The convolutional approach to predicting

the anchors in Faster R-CNN means that its predictions are reasonably

translation-invariant and mostly local. An object in one part of the

image rarely a�ects an object in a completely di�erent part.

Another potential challenge is how the model handles noise in the

target sets. We have only tested DSPN on a synthetic dataset where

perfect information about the scene is available, which is unrealistic for

datasets with real images and human annotators. We currently do not

know how robust our method is to noisy labels. A missing object in the

labeling could again a�ect the entire input feature vector and therefore

the quality of the entire prediction.

A hybrid approach that combines DSPN with Faster R-CNN and sim-

ilar object detection architectures could combine the bene�ts of the

two: proper set prediction with end-to-end training whilst maintaining

reasonable translation-invariance.

Instance segmentation Instance segmentation models typically use

a two-stage approach: �rst detect the objects, then segment each object

individually. By using our DSPN model, this can be turned into a single

stage of predicting the set of masks, each mask corresponding to the

segmentation of one object. By applying a softmax function on every

pixel of these masks across the set, we could ensure that each pixel

in the image belongs to at most one object or the background. This

is arguably a more elegant approach to instance segmentation, which

could also lead to better results since it can be trained end-to-end.

Graph prediction A domain that is very similar to sets is the domain

of graphs. With the set of nodes and the set of edges, or the set of

nodes and – for each node – the set of neighbours, the connection to

sets is quite clear. Graph prediction methods have also only relied on

MLPs and RNNs so far, so the responsibility problem and our DSPN

method to avoid it are directly applicable. In particular, replacing the

set encoder in our model with a graph encoder should immediately

enable the prediction of graphs. The main problem here would be the

Chapter 7. Future work 121

choice of loss function between graphs, which in the most di�cult case

would have to solve the graph isomorphism problem. Simonovsky et

al. [92] have used such a graph loss before, which has a large Θ(=4)
time complexity in the number of nodes. Finding good, e�cient graph

losses is perhaps the bigger challenge with predicting graphs.

7.3 Latent sets in neural networks

Lastly, it would be fascinating to have sets used in more contexts than

in neural networks speci�cally for sets. This is a more speculative

idea.

An interesting aspect about sets is that they are a unique combination

between a symbolic, object-based representation (set elements are dis-

crete and each set element corresponds to a di�erent symbol or object),

while also being grounded (each set elements is associated with a con-

tinuous, learned feature vector describing it). Humans are able to think

about objects in terms of its smaller parts, like a hand being made of

�ve �ngers and a palm. By letting a traditional neural network like an

image classi�er use sets of feature vectors as latent representation, we

may start to see such object- and parts-based representations emerge.

Instead of modeling an image of a hand as a feature vector, it could

learn to model it as a set of �ve �ngers and a palm, or other decomposi-

tions of the hand into smaller parts. We know from Chapter 3 that an

object-based representation can be much easier to work with, so being

able to discover such a representation automatically through the set

structure would be quite useful. In some ways, this is an extension of

the parts-based representation idea that Capsule Neural Networks [87]

try to achieve, without forcing the notion of pose in Capsule Nets onto

the neural network.

Because sets are in this unique position between connectionist and

symbolic Arti�cial Intelligence, they have the potential to combine the

best of both worlds. We hope that our thesis provides a stepping stone

towards this goal.

122 7.3. Latent sets in neural networks

123

Appendix A

Experimental details

A.1 Counting in visual question answering

Here, we detail our improved baseline model for visual question an-

swering in Chapter 3. We provide the corresponding source code to re-

produce our experiments at https://github.com/Cyanogenoid/

vqa-counting.

The most signi�cant change to the baseline model [53] that we make is

the use of object proposal features by Anderson et al. [4] as previously

mentioned. The following tweaks were made without considering the

performance impact on the counting module; only the validation accu-

racy of the baseline was optimised. Details not mentioned here can be

assumed to be the same as in their paper.

To fuse vision features x and question features ~, the baseline concate-

nates and linearly projects them, followed by a ReLU activation. This

is equivalent to ReLU(]Gx +]~~). We include an additional term

that measures how di�erent the projected x is from the projected ~,

changing the fusion mechanism to

x �~ = ReLU(]Gx +]~~) − (]Gx −]~~)2 (A.1)

The LSTM [43] for question encoding is replaced with a GRU [22] with

the same hidden size with dynamic per-example unrolling instead of a

�xed 14 words per question. We apply batch normalisation [48] before

the last linear projection in the classi�er to the 3000 classes. The learning

rate is increased from 0.001 to 0.0015 and the batch size is doubled to

256. The model is trained for 100 epochs (1697 iterations per epoch

to train on the training set, 2517 iterations per epoch to train on both

training and validation sets) instead of 100,000 iterations, roughly in

line with the doubling of dataset size when going from VQA v1 to VQA

v2.

https://github.com/Cyanogenoid/vqa-counting
https://github.com/Cyanogenoid/vqa-counting

124 A.2. Permutation-optimisation

Note that this single-model baseline is regularised with dropout [94],

while the other current top models skip this and rely on ensembling

to reduce over�tting. This explains why our single-model baseline

outperforms most single-model results of the state-of-the-art models.

We found ensembling of the regularised baseline to provide a much

smaller bene�t in preliminary experiments compared to the results of

ensembling unregularised networks reported in Teney et al. [97].

A.2 Permutation-optimisation

In this section, we describe the experimental set-up of Chapter 4 in

detail. All of our experiments can be reproduced using our implementa-

tion at https://github.com/Cyanogenoid/perm-optim in Py-

Torch [81] through the experiments/all.sh script. For the former

three experiments, we use the following hyperparameters through-

out:

• Optimiser: Adam [57] (default settings in PyTorch: V1 = 0.9, V2 =

0.999, n = 10−8)

• Initial step size [in inner gradient descent: 1.0

All weights are initialised with Xavier initialisation [35]. We choose the

5 within the ordering cost function � to be a small MLP. The input to

5 has 2 times the number of dimensions of each element, obtained by

concatenating the pair of elements. This is done for all pairs that can be

formed from the input set. This is linearly projected to some number

of hidden units to which a ReLU activation is applied. Lastly, this is

projected down to 1 dimension for sorting numbers and VQA, and 2

dimensions for assembling image mosaics (1 output for row-wise costs,

1 output for column-wise costs). These outputs are used for creating

the ordering cost matrix I .

A.2.1 Sorting numbers

• Inner gradient descent steps) : 6

• Adam learning rate: 0.1

• Batch size: 512

• Number of sets to sort in training set: 218

• Set sizes: 5, 10, 15, 80, 100, 120, 512, 1024

• Evaluation intervals: [0, 1], [0, 10], [0, 1000], [1, 2], [10, 11],
[100, 101], [1000, 1001] (same as in Mena et al. [70])

• � size of hidden dimension: 16

https://github.com/Cyanogenoid/perm-optim

Appendix A. Experimental details 125

The ordering cost function � concatenates the two �oats of each pair

and applies a 2-layer MLP that takes the 2 inputs to 16 hidden units,

ReLU activation, then to one output.

For evaluation, we switch to double precision �oating point numbers.

This is because for the interval [1000, 1001], as the set size increases,

there are not enough unique single precision �oats in that interval

for the sets to contain only unique �oats with high probability (the

birthday problem). Using double precision �oats avoids this issue. Note

that using single precision �oats is enough for the other intervals and

smaller set sizes, and training is always done on the interval [0, 1] at

single precision.

A.2.2 Re-assembling image mosaics

• Adam learning rate: 10−3

• Inner gradient descent steps) : 4

• Batch size: 32

• Training epochs: 20 (MNIST, CIFAR10) or 1 (ImageNet)

• � size of hidden dimension: 64 (MNIST, CIFAR10) or 128 (Ima-

geNet)

For all three image datasets from which we take images (MNIST, CI-

FAR10, ImageNet), we �rst normalise the inputs to have zero mean and

standard deviation one over the dataset as is common practice. For

ImageNet, we crop rectangular images to be square by reducing the size

of the longer side to the length of the shorter side (centre cropping).

Images that are not exactly divisible by the number of tiles are �rst

rescaled to the nearest bigger image size that is exactly divisible. Follow-

ing Mena et al. [70], we process each tile with a 5 × 5 convolution with

padding and stride 1, 2 × 2 max pooling, and ReLU activation. This is

�attened into a vector to obtain the feature vector for each tile, which is

then fed into our � . Unlike Mena et al. [70], we decide not to arbitrarily

upscale MNIST images by a factor of two, even when upscaling results

in slightly better performance in general.

While we were able to mostly reproduce their MNIST results, we were

not able to reproduce their ImageNet results for the 3×3 case. In general,

we observed that good settings for their model also improved the results

of our PO-U and PO-LA models. Better hyperparameters than what we

used should improve all models similarly while keeping the ordering of

how well they perform the same.

This task is also known as jigsaw puzzle [78], but we decided on naming

it image mosaics because the tiles are square which can lead to multiple

126 A.2. Permutation-optimisation

solutions, rather than the typical unique solution in traditional jigsaw

puzzles enforced by the di�erent tile shapes.

A.2.3 Implicit permutations through classi�cation

We use the same setting as for the image mosaics, but further process

the output image with a ResNet-18. For MNIST and CIFAR10, we replace

the �rst convolutional layer with one that has a 3 × 3 kernel size and

no striding. This ResNet-18 is �rst trained on the original dataset for 20

epochs (1 for ImageNet), though images may be rescaled if the image

size is not divisible by the number of tiles per side. All weights are

then frozen and the permutation method is trained for 20 epochs (1

for ImageNet). As stated previously, this is necessary in order for the

ResNet-18 to not use each tile individually and ignore the resulting

artefacts from the permuted tiles. This is also one of the reasons why

we downscale ImageNet images to 64 × 64 pixels. Because the resulting

image tiles are so big while the receptive �eld of ResNet-18 is relatively

small if we were to use 256 × 256 images, the permutation artefacts

barely a�ect results because they are only a small fraction of the globally-

pooled features. The permutation permutes each set of tiles, which are

reconstructed (without use of the Hungarian algorithm) into an image,

which is then processed by the ResNet-18.

We observed that the LinAssign model by Mena et al. [70] consistently

results in NaN values after Sinkhorn normalisation in this set-up, despite

our Sinkhorn implementation using the numerically-stable version of

softmax with the exp-normalise trick. We avoided this issue by clipping

the outputs of their model into the [-10, 10] interval before Sinkhorn

normalisation. We did not observe these NaN issues with our PO-U

model.

A.2.4 Visual question answering

We use the o�cial implementation of BAN as baseline without changing

any of the hyperparameters. We thus refer to [55] for details of their

model architecture and hyperparameters. The only change to hyperpa-

rameters that we make is reducing the batch size from 256 to 112 due

to the GPU memory requirements of the baseline model, even without

our permutation mechanism.

The BAN model generates attention weights between all object propos-

als in a set and words of the question. We take the attention weight for

a single object proposal to be the maximum attention weight for that

proposal over all words of the question, the same as in their integration

of the counting module. Each element of the set, corresponding to

object proposals, is the concatenation of this attention logit, bounding

Appendix A. Experimental details 127

box coordinates, and the feature vector projected from 2048 down to 8

dimensions. We found this projection necessary to not inhibit learning

of the rest of the model, which might be due to gradient clipping or other

hyperparameters that are no longer optimal in the BAN model. This set

of object proposals is then permuted with) = 3 and a 2-layer MLP with

hidden dimension 128 for 5 to produce the ordering costs. The elements

in the permuted sequence are weighted by how relevant each proposal

is (sigmoid of the corresponding attention logit) and the sequence is

then fed into an LSTM with 128 units. The last cell state of the LSTM is

the set representation which is projected, ReLUd, and added back into

the hidden state of the BAN model. The remainder of the BAN model

is now able to use information from this set representation. There are

8 attention glimpses, so we process each of these with a PO-U module

and an LSTM with shared parameters across these 8 glimpses.

A.3 Featurewise sort pooling

In this section, we describe the experimental set-up of Chapter 5 in

detail. We provide the code to reproduce all experiments at https:

//github.com/Cyanogenoid/fspool.

For almost all experiments, we used FSPool and the unpooling version

of it with : = 20. We guessed this value without tuning, and we did not

observe any major di�erences when we tried to change this on CLEVR

to : = 5 and : = 40.]̄ can be initialised in di�erent ways, such as

by sampling from a standard Gaussian. However, for the purposes of

starting the model as similarly as possible to the sum pooling baseline

on CLEVR and on the graph classi�cation datasets, we initialise]̄ to a

matrix of all 1s on them.

A.3.1 Polygons

The polygons are centred on 0 with a radius of 1. The points in the

set are randomly permuted to remove any ordering in the set from

the generation process that a model that is not permutation-invariant

or permutation-equivariant could exploit. We use a batch size of 16

for all three models and train it for 10240 steps. We use the Adam

optimiser [57] with 0.001 learning rate and their suggested values for

the other optimiser parameters (PyTorch defaults). Weights of linear

and convolutional layers are initialised as suggested in Glorot et al. [35].

The size of every hidden layer is set to 16 and the latent space is set to 1

(it should only need to store the rotation as latent variable). We have

also tried much hidden and latent space sizes of 128 when we tried to

get better results for the baselines.

https://github.com/Cyanogenoid/fspool
https://github.com/Cyanogenoid/fspool

128 A.3. Featurewise sort pooling

A.3.2 MNIST

We train on the training set of MNIST for 10 epochs and the shown

results come from the test set of MNIST. For an image, the coordinate of a

pixel is included if the pixel is above the mean pixel level of 0.1307 (with

pixel levels ranging 0–1). Again, the order of the points are randomised.

We did not include results of the Hungarian loss because we did not get

the model to converge to results of similar quality to the direct MSE

loss or Chamfer loss, and training time took too long (> 1 day) in order

to �nd better parameters.

The latent space is increased from 1 to 16 and the size of the hidden

layers is increased from 16 to 32. All other hyperparameters are the the

same as for the Polygons dataset.

A.3.3 CLEVR

The architecture and hyperparameters come from the open-source im-

plementation available at

https://github.com/mesnico/RelationNetworks-CLEVR.

For the RN baseline, the set is �rst expanded into the set of all pairs by

concatenating the 2 feature vectors of the pair for all pairs of elements in

the set. For the Janossy Pooling baseline, we use the model con�guration

from Murphy et al. [75] that appeared best in their experiments, which

uses c-SGD with an LSTM that has |ℎ | as neighbourhood size.

The question representation coming from the 256-unit LSTM, process-

ing the question tokens in reverse with each token embedded into 32

dimensions, is concatenated to all elements in the set. Each element

of this new set is �rst processed by a 4-layer MLP with 512 neurons in

each layer and ReLU activations. The set of feature vectors is pooled

with a pooling method like sum and the output of this is processed with

a 3-layer MLP (hidden sizes 512, 1024, and number of answer classes)

with ReLU activations. A dropout rate of 0.05 is applied before the

last layer of this MLP. Adam is used with a starting learning rate of

0.000005, which doubles every 20 epochs until the maximum learning

rate of 0.0005 is reached. Weight decay of 0.0001 is applied. The model

is trained for 350 epochs.

A.3.4 Graph classi�cation

The GIN architecture starts with 5 sequential blocks of graph convolu-

tions. Each block starts with summing the feature vector of each node’s

neighbours into the node’s own feature vector. Then, an MLP is applied

to the feature vectors of all the nodes individually. The details of this

MLP were somewhat unclear in [104] and we chose Linear-ReLU-BN-

Linear-ReLU-BN in the end. We tried Linear-BN-ReLU-Linear-BN-ReLU

https://github.com/mesnico/RelationNetworks-CLEVR

Appendix A. Experimental details 129

Table A.1: Average of best hyperparameters over 10 repeats.

IMDB-B IMDB-M RDT-B RDT-M5K COLLAB MUTAG PROTEINS PTC NCI1

GIN-FSPool

- dimensionality 64.0 64.0 64.0 64.0 64.0 28.8 19.2 28.8 30.4

- batch size 66.0 100 45.6 32.0 86.4 89.6 60.8 41.6 128

- dropout 0.25 0.15 0.35 0.10 0.40 0.15 0.35 0.20 0.50

GIN-Base

- dimensionality 64.0 64.0 64.0 64.0 64.0 27.2 20.8 25.6 28.8

- batch size 86.4 93.2 72.8 100 100 70.4 60.8 60.8 128

- dropout 0.30 0.15 0.25 0.45 0.40 0.25 0.45 0.20 0.35

as well, which gave us slightly worse validation results for both the

baseline and the FSPool version. The outputs of each of the 5 blocks

are concatenated and pooled, either with a sum for the social network

datasets, mean for the social network datasets (this is as speci�ed in

GIN), or with FSPool for both types of datasets. This is followed by

BN-Linear-ReLU-Dropout-Linear as classi�er with a softmax output

and cross-entropy loss. We used the torch-geometric library [30] to

implement this model.

The starting learning rate for Adam is 0.01 and is reduced every 50

epochs. Weights are initialised as suggested in [35]. The hyperparame-

ters to choose from are: dropout ratio ∈ {0, 0.5}, batch size ∈ {32, 128},
if bioinformatics dataset hidden sizes of all layers ∈ {16, 32} and 500

epochs, if social network dataset the hidden size is 64 and 250 epochs.

Due to GPU memory limitations we used a batch size of 100 instead

of 128 for social network datasets. The best hyperparameters are se-

lected based on best average validation accuracy across the 10-fold

cross-validation, where one of the 9 training folds is used as validation

set each time. In other words, within one 10-fold cross-validation run

the hyperparameters used for the test set are the same, while across the

10 repeats of this with di�erent seeds the best hyperparameters may

di�er.

A.4 Deep set prediction networks

In this section, we describe the experimental set-up of Chapter 6 in

detail. In our algorithm, [was chosen in initial experiments and we did

not tune it beyond that. We did this by increasing [until the output

set visibly changed between inner optimisation steps when the set

encoder is randomly initialised. This makes it so that changing the set

encoder weights has a noticeable e�ect rather than being stuck with

_̂
()) ≈ _̂

(0)
.

130 A.4. Deep set prediction networks

) = 10 was chosen because it seemed to be enough to converge to good

solutions on MNIST. We simply kept this for the supervised experiments

on CLEVR.

In the supervised experiments, we would often observe large spikes in

training that cause the model diverge when _ = 1. By changing around

various parameters, we found that reducing _ eliminated most of this

issue and also made training converge to better solutions. Much smaller

values than 0.1 converged to worse solutions. This is likely because

the issue of not having the !repr(_ , z) term in the outer loss in the �rst

place (_ = 0) is present again – see Subsection 6.3.3.

For all experiments, we used Adam with the default momentum values

and batch size 32 for the outer optimisation. The only hyperparameter

we tuned in the experiments is the learning rate of the outer optimisation.

Every individual experiment is run on a single 1080 Ti GPU.

The MLP decoder baseline has 3 layers with 256 (MNIST) or 512 (CLEVR)

neurons in the �rst two layers and the number of channels of the output

set in the task in the third layer. The LSTM decoder linearly transforms

the latent space into 256 (MNIST) or 512 (CLEVR) dimensions, which

is used as initial cell state of the LSTM. The LSTM is run for the same

number of steps as the maximum set size, and the outputs of these steps

is each linearly transformed into the output dimensionality.

A.4.1 MNIST

For MNIST, we train our model and the baseline model for 100 epochs

to make sure that they have converged. Both models have a 3-layer

MLP with ReLU activations and 256 neurons in the three layers. For

simplicity, sets are padded to a �xed size for FSPool. FSPool has 20

pieces in its piecewise linear function. We tried learning rates in

{1.0, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00001} and chose 0.01.

For the baselines, none of the other learning rates performed signi�-

cantly better than the one we chose.

The baselines are trained slightly di�erently to our model. They do

not output mask values natively, so we have to train them with the

mask values in the training target. In other words, they are trained to

predict x coordinate, y coordinate, and the mask for each point. We

found it crucial to explicitly add 1 to the mask in the baseline model

for good results. Otherwise, many of the baseline outputs get stuck in

the local optimum of predicting the (0, 0, 0) point and the output is too

sparse.

Appendix A. Experimental details 131

A.4.2 CLEVR

We train our model and the baselines models for 100 epochs on the

training set of CLEVR and evaluate on the validation set, since no

ground-truth scene information is available for the test set. All images

are resized to 128×128 resolution. The set encoder is a 2-layer Relation

Network with ReLU activation between the two layers, wherein the sum

pooling is replaced with FSPool. The two layers have 512 neurons each.

Because we use the Hungarian loss instead of the Chamfer loss here,

including the mask feature in the target set does not worsen results,

so we include the mask target for both the baseline and our model for

consistency. To tune the learning rate, we started with the learning rate

found for MNIST and decreased it similarly-sized steps until the training

accuracy after 100 epochs worsened. We settled on 0.0003 as learning

rate for both the bounding box and the state prediction task. All other

hyperparameters are kept the same as for MNIST. The ResNet34 that

encodes the image is not pre-trained.

132 A.4. Deep set prediction networks

133

Bibliography

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas J Guibas, “Learning representations and generative

models for 3D point clouds”, in Proceedings of the 35th Inter-

national Conference on Machine Learning (ICML), 2018. arXiv:

1707.02392.

[2] Ryan Prescott Adams and Richard S. Zemel, “Ranking via

sinkhorn propagation”, 2011. arXiv: 1106.1925.

[3] Brandon Amos and J. Zico Kolter, “Optnet: Di�erentiable opti-

mization as a layer in neural networks”, in Proceedings of the

34th International Conference on Machine Learning (ICML), 2017.

arXiv: 1703.00443.

[4] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney,

Mark Johnson, Stephen Gould, and Lei Zhang, “Bottom-up and

top-down attention for image captioning and visual question

answering”, in The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018. arXiv: 1707.07998.

[5] Cem Anil, James Lucas, and Roger Grosse, “Sorting out Lips-

chitz function approximation”, in Proceedings of the 36th Inter-

national Conference on Machine Learning (ICML), 2019. arXiv:

1811.05381.

[6] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret

Mitchell, Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh,

“VQA: Visual Question Answering”, in The IEEE International

Conference on Computer Vision (ICCV), 2015. arXiv: 1505.00468.

[7] James Atwood and Don Towsley, “Di�usion-convolutional neu-

ral networks”, in Advances in Neural Information Processing Sys-

tems 29 (NeurIPS), 2016. arXiv: 1511.02136.

[8] Samaneh Azadi, Jiashi Feng, and Trevor Darrell, “Learning detec-

tion with diverse proposals”, in The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. arXiv: 1704.03533.

[9] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu, “Multiple

object recognition with visual attention”, in International Confer-

ence on Learning Representations (ICLR), 2015. arXiv: 1412.7755.

https://arxiv.org/abs/1707.02392
https://arxiv.org/abs/1106.1925
https://arxiv.org/abs/1703.00443
https://arxiv.org/abs/1707.07998
https://arxiv.org/abs/1811.05381
https://arxiv.org/abs/1505.00468
https://arxiv.org/abs/1511.02136
https://arxiv.org/abs/1704.03533
https://arxiv.org/abs/1412.7755

134

[10] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, “Neu-

ral machine translation by jointly learning to align and translate”,

in International Conference on Learning Representations (ICLR),

2015. arXiv: 1409.0473.

[11] Lukas Balles and Thomas Fischbacher, “Holographic and other

point set distances for machine learning”, 2019, Available at:

https://openreview.net/forum?id=rJlpUiAcYX.

[12] David Belanger and Andrew McCallum, “Structured prediction

energy networks”, in Proceedings of the 33rd International Con-

ference on Machine Learning (ICML), 2016. arXiv: 1511.06350.

[13] David Belanger, Bishan Yang, and Andrew. McCallum, “End-to-

end learning for structured prediction energy networks”, in Pro-

ceedings of the 34th International Conference on Machine Learning

(ICML), 2017. arXiv: 1703.05667.

[14] David Belli and Tomas Kipf, “Image-conditioned graph genera-

tionfor road network extraction”, in NeurIPS workshop on Graph

Representation Learning, 2019. arXiv: 1910.14388.

[15] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-

son Weston, “Curriculum learning”, in Proceedings of the 26th

International Conference on Machine Learning (ICML), 2009.

[16] Wieland Brendel and Matthias Bethge, “Approximating CNNs

with bag-of-local-features models works surprisingly well on im-

agenet”, in International Conference on Learning Representations

(ICLR), 2019. arXiv: 1904.00760.

[17] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds,

Nicole Hamilton, and Greg Hullender, “Learning to rank us-

ing gradient-descent”, in Proceedings of the 22nd International

Conference on Machine Learning (ICML), 2005.

[18] Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas

Kipf, and Pietro Liò, “Towards sparse hierarchical graph classi-

�ers”, in NeurIPS workshop on Relational Representation Learning,

2018. arXiv: 1811.01287.

[19] Nicola De Cao and Thomas Kipf, “MolGAN: An implicit genera-

tive model for small molecular graphs”, in ICML workshop on

Deep Generative Models, 2018. arXiv: 1805.11973.

[20] Irène Charon and Olivier Hudry, “A survey on the linear or-

dering problem for weighted or unweighted tournaments”, A

Quarterly Journal of Operations Research (4OR), volume 5, num-

ber 1, pages 5–60, 2007. doi: 10.1007/s10288-007-0036-6.

https://arxiv.org/abs/1409.0473
https://openreview.net/forum?id=rJlpUiAcYX
https://arxiv.org/abs/1511.06350
https://arxiv.org/abs/1703.05667
https://arxiv.org/abs/1910.14388
https://arxiv.org/abs/1904.00760
https://arxiv.org/abs/1811.01287
https://arxiv.org/abs/1805.11973
https://doi.org/10.1007/s10288-007-0036-6

135

[21] Prithvijit Chattopadhyay, Ramakrishna Vedantam, Ramprasaath

R. Selvaraju, Dhruv Batra, and Devi Parikh, “Counting everyday

objects in everyday scenes”, in The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. arXiv: 1604.03505.

[22] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and

Yoshua Bengio, “On the properties of neural machine translation:

Encoder-decoder approaches”, in EMNLP workshop on Syntax,

Semantics and Structure in Statistical Translation (SSST), 2014.

arXiv: 1409.1259.

[23] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann

Dauphin, and Nicolas Usunier, “Parseval Networks: Improv-

ing robustness to adversarial examples”, in Proceedings of the

34th International Conference on Machine Learning (ICML), 2017.

arXiv: 1704.08847.

[24] Joseph Paul Cohen, Henry Z. Lo, and Yoshua Bengio, “Count-

ception: Counting by fully convolutional redundant counting”,

in ICCV workshop, 2017. arXiv: 1703.08710.

[25] Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, and

Stephen Gould, “DeepPermNet: Visual Permutation Learning”,

in The IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2017. arXiv: 1704.02729.

[26] George Cybenko, “Approximation by superpositions of a sig-

moidal function”, Mathematics of Control, Signals and Systems,

volume 2, number 4, pages 303–314, 1989, issn: 1435-568X. doi:

10.1007/BF02551274.

[27] Mikyas T. Desta, Larry Chen, and Tomasz Kornuta, “Object-

based reasoning in VQA”, in IEEE Winter Conference on Applica-

tions of Computer Vision (WACV), 2018. arXiv: 1801.09718.

[28] Justin Domke, “Generic Methods for Optimization-Based Mod-

eling”, in Proceedings of the 15th International Conference on

Arti�cial Intelligence and Statistics (AISTATS), 2012.

[29] Haoqiang Fan, Hao Su, and Leonidas J. Guibas, “A point set

generation network for 3D object reconstruction from a single

image”, in The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017. arXiv: 1612.00603.

[30] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich

Müller, “SplineCNN: Fast geometric deep learning with continu-

ous B-spline kernels”, in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018. arXiv: 1711.08920.

[31] Thomas Finley and Thorsten Joachims, “Supervised clustering

with support vector machines”, in Proceedings of the 22nd Inter-

national Conference on Machine Learning (ICML), 2005.

https://arxiv.org/abs/1604.03505
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1704.08847
https://arxiv.org/abs/1703.08710
https://arxiv.org/abs/1704.02729
https://doi.org/10.1007/BF02551274
https://arxiv.org/abs/1801.09718
https://arxiv.org/abs/1612.00603
https://arxiv.org/abs/1711.08920

136

[32] Fajwel Fogel, Rodolphe Jenatton, Francis Bach, and Alexan-

dre D’Aspremont, “Convex relaxations for permutation prob-

lems”, in Advances in Neural Information Processing Systems 26

(NeurIPS), 2013. arXiv: 1306.4805.

[33] Hongyang Gao and Shuiwang Ji, “Graph U-Net”, in Proceedings

of the 36th International Conference on Machine Learning (ICML),

2019. arXiv: 1905.05178.

[34] Aude Genevay, Gabriel Peyré, and Marco Cuturi, “Learning

generative models with sinkhorn divergences”, in Proceedings

of the 21st International Conference on Arti�cial Intelligence and

Statistics (AISTATS), 2010. arXiv: 1706.00292.

[35] Xavier Glorot and Yoshua Bengio, “Understanding the di�culty

of training deep feedforward neural networks”, in Proceedings

of the 13th International Conference on Arti�cial Intelligence and

Statistics (AISTATS), 2010.

[36] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep

Learning. MIT Press, 2016, isbn: 9780262035613. arXiv: 1807.

07987.

[37] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra,

and Devi Parikh, “Making the V in VQA matter: Elevating the

role of image understanding in Visual Question Answering”, in

The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017. arXiv: 1612.00837.

[38] Klaus Gre�, Raphaël Lopez Kaufmann, Rishab Kabra, Nick

Watters, Chris Burgess, Daniel Zoran, Loic Matthey, Matthew

Botvinick, and Alexander Lerchner, “Multi-object representation

learning with iterative variational inference”, in Proceedings of

the 36th International Conference on Machine Learning (ICML),

2019. arXiv: 1903.00450.

[39] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon,

“Stochastic optimization of sorting networks via continuous

relaxations”, in International Conference on Learning Representa-

tions (ICLR), 2019. arXiv: 1903.08850.

[40] S. Hamid Rezato�ghi, Vijay Kumar B G, Anton Milan, Ehsan

Abbasnejad, Anthony Dick, and Ian Reid, “DeepSetNet: Predict-

ing sets with deep neural networks”, in The IEEE International

Conference on Computer Vision (ICCV), 2017. arXiv: 1611.08998.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep

residual learning for image recognition”, in The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016. arXiv:

1512.03385.

https://arxiv.org/abs/1306.4805
https://arxiv.org/abs/1905.05178
https://arxiv.org/abs/1706.00292
https://arxiv.org/abs/1807.07987
https://arxiv.org/abs/1807.07987
https://arxiv.org/abs/1612.00837
https://arxiv.org/abs/1903.00450
https://arxiv.org/abs/1903.08850
https://arxiv.org/abs/1611.08998
https://arxiv.org/abs/1512.03385

137

[42] Paul Henderson and Vittorio Ferrari, “End-to-end training of

object class detectors for mean average precision”, in Asian

Conference on Computer Vision (ACCV), 2017. arXiv: 1607.03476.

[43] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term

memory”, Neural Computation, pages 1735–1780, 1997, issn:

0899-7667. doi: 10.1162/neco.1997.9.8.1735.

[44] Jan Hosang, Rodrigo Benenson, and Bernt Schiele, “Learning

non-maximum suppression”, in The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017. arXiv: 1705.

02950.

[45] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei,

“Relation networks for object detection”, in The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2018. arXiv:

1711.11575.

[46] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Andrea Vedaldi,

“Gather-Excite: Exploiting feature context in convolutional neu-

ral networks”, in Advances in Neural Information Processing Sys-

tems 31 (NeurIPS), 2018. arXiv: 1810.12348.

[47] Drew A. Hudson and Christopher D. Manning, “Compositional

Attention Networks for Machine Reasoning”, in International

Conference on Learning Representations (ICLR), 2018. arXiv: 1803.

03067.

[48] Sergey Io�e and Christian Szegedy, “Batch normalization: Ac-

celerating deep network training by reducing internal covariate

shift”, in Proceedings of the 32nd International Conference on

Machine Learning (ICML), 2015. arXiv: 1502.03167.

[49] Allan Jabri, Armand Joulin, and Laurens van der Maaten, “Re-

visiting visual question answering baselines”, in European Con-

ference on Computer Vision (ECCV), 2016. arXiv: 1606.08390.

[50] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray

Kavukcuoglu, “Spatial transformer networks”, in Advances in

Neural Information Processing Systems 28 (NeurIPS), 2015. arXiv:

1506.02025.

[51] Daniel D. Johnson, “Learning graphical state transitions”, in In-

ternational Conference on Learning Representations (ICLR), 2017.

[52] Justin Johnson, Bharath Hariharan, Laurens van der Maaten,

Li Fei-Fei, C. Lawrence Zitnick, and Ross Girshick, “CLEVR: A

diagnostic dataset for compositional language and elementary

visual reasoning”, in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017. arXiv: 1612.06890.

https://arxiv.org/abs/1607.03476
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1705.02950
https://arxiv.org/abs/1705.02950
https://arxiv.org/abs/1711.11575
https://arxiv.org/abs/1810.12348
https://arxiv.org/abs/1803.03067
https://arxiv.org/abs/1803.03067
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1606.08390
https://arxiv.org/abs/1506.02025
https://arxiv.org/abs/1612.06890

138

[53] Vahid Kazemi and Ali Elqursh, “Show, ask, attend, and answer:

A strong baseline for visual question answering”, 2017. arXiv:

1704.03162.

[54] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra

Mutzel, and Marion Neumann, Benchmark data sets for graph

kernels, 2016. Available at: http://graphkernels.cs.tu-

dortmund.de.

[55] Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang, “Bilinear at-

tention networks”, in Advances in Neural Information Processing

Systems 31 (NeurIPS), 2018. arXiv: 1805.07932.

[56] Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush,

“Structured attention networks”, in International Conference on

Learning Representations (ICLR), 2017. arXiv: 1702.00887.

[57] Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochas-

tic optimization”, in International Conference on Learning Repre-

sentations (ICLR), 2015. arXiv: 1412.6980.

[58] Thomas N. Kipf and Max Welling, “Semi-supervised classi�-

cation with graph convolutional networks”, in International

Conference on Learning Representations (ICLR), 2017. arXiv: 1609.

02907.

[59] Alex Krizhevsky, “Learning multiple layers of features from tiny

images”, Tech. Rep., 2009.

[60] Hugo Larochelle and Geo�rey E Hinton, “Learning to combine

foveal glimpses with a third-order boltzmann machine”, in Ad-

vances in Neural Information Processing Systems 23 (NeurIPS),

2010.

[61] Justin Lazarow, Long Jin, and Zhuowen Tu, “Introspective neural

networks for generative modeling”, in The IEEE International

Conference on Computer Vision (ICCV), 2017.

[62] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha�ner,

“Gradient-based learning applied to document recognition”, in

Proceedings of the IEEE, 1998. doi: 10.1109/5.726791.

[63] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Se-

ungjin Choi, and Yee Whye Teh, “Set transformer: A framework

for attention-based permutation-invariant neural networks”,

in Proceedings of the 36th International Conference on Machine

Learning (ICML), 2019. arXiv: 1810.00825.

[64] Kwonjoon Lee, Weijian Xu, Fan Fan, and Zhuowen Tu, “Wasser-

stein introspective neural networks”, in The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. arXiv:

1711.08875.

https://arxiv.org/abs/1704.03162
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
https://arxiv.org/abs/1805.07932
https://arxiv.org/abs/1702.00887
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1810.00825
https://arxiv.org/abs/1711.08875

139

[65] Victor Lempitsky and Andrew Zisserman, “Learning to count

objects in images”, in Advances in Neural Information Processing

Systems 23 (NeurIPS), 2010.

[66] Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poczos,

and Ruslan Salakhutdinov, “Point cloud GAN”, in ICLR work-

shop on Deep Generative Models for Highly Structured Data, 2019.

arXiv: 1810.05795.

[67] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter

Battaglia, “Learning deep generative models of graphs”, in Pro-

ceedings of the 35th International Conference on Machine Learning

(ICML), 2018. arXiv: 1803.03324.

[68] Jonathan Long, Evan Shelhamer, and Trevor Darrell, “Fully con-

volutional networks for semantic segmentation”, in The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),

2015. arXiv: 1411.4038.

[69] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh, “Hi-

erarchical question-image co-attention for visual question an-

swering”, in Advances in Neural Information Processing Systems

(NeurIPS), 2016. arXiv: 1606.00061.

[70] Gonzalo Mena, David Belanger, Scott Linderman, and Jasper

Snoek, “Learning Latent Permutations with Gumbel-Sinkhorn

Networks”, in International Conference on Learning Representa-

tions (ICLR), 2018. arXiv: 1802.08665.

[71] Nicola Messina, Giuseppe Amato, Fabio Carrara, Fabrizio Falchi,

and Claudio Gennaro, “Learning relationship-aware visual fea-

tures”, in ECCV workshop on Compact and E�cient Feature Rep-

resentation and Learning in Computer Vision (CEFRL), 2018.

[72] Dmytro Mishkin and Jiri Matas, “All you need is a good init”,

in International Conference on Learning Representations (ICLR),

2016. arXiv: 1511.06422.

[73] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray

Kavukcuoglu, “Recurrent models of visual attention”, in Ad-

vances in Neural Information Processing Systems 27 (NeurIPS),

2014. arXiv: 1406.6247.

[74] Igor Mordatch, “Concept learning with energy-based models”,

in ICLR workshop, 2018. arXiv: 1811.02486.

[75] Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao,

and Bruno Ribeiro, “Janossy pooling: Learning deep permutation-

invariant functions for variable-size inputs”, in International

Conference on Learning Representations (ICLR), 2019. arXiv:

1811.01900.

https://arxiv.org/abs/1810.05795
https://arxiv.org/abs/1803.03324
https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1606.00061
https://arxiv.org/abs/1802.08665
https://arxiv.org/abs/1511.06422
https://arxiv.org/abs/1406.6247
https://arxiv.org/abs/1811.02486
https://arxiv.org/abs/1811.01900

140

[76] Marion Neumann, Roman Garnett, Christian Bauckhage, and

Kristian Kersting, “Propagation kernels: E�cient graph kernels

from propagated information”, Machine Learning, volume 102,

number 2, pages 209–245, 2016, issn: 0885-6125.

[77] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov,

“Learning convolutional neural networks for graphs”, in Proceed-

ings of the 33rd International Conference on Machine Learning

(ICML), 2016. arXiv: 1605.05273.

[78] Mehdi Noroozi and Paolo Favaro, “Unsupervised learning of

visual representations by solving jigsaw puzzles”, in European

Conference on Computer Vision (ECCV), 2016. arXiv: 1603.09246.

[79] Rasmus Palm, Ulrich Paquet, and Ole Winther, “Recurrent rela-

tional networks”, in Advances in Neural Information Processing

Systems 31 (NeurIPS), 2018. arXiv: 1711.08028.

[80] Panos M. Pardalos and Stephen A. Vavasis, “Quadratic pro-

gramming with one negative eigenvalue is NP-hard”, Journal

of Global Optimization, volume 1, number 1, pages 15–22, 1991.

doi: 10.1007/BF00120662.

[81] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,

Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,

Luca Antiga, and Adam Lerer, “Automatic di�erentiation in

PyTorch”, in NeurIPS workshop on Autodi�, 2017.

[82] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin,

and Aaron C. Courville, “FiLM: Visual reasoning with a general

conditioning layer”, in Proceedings of the 32nd AAAI Conference

on Arti�cial Intelligence (AAAI), 2018. arXiv: 1709.07871.

[83] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas,

“PointNet: Deep Learning on Point Sets for 3D Classi�cation

and Segmentation”, in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017. arXiv: 1612.00593.

[84] Mengye Ren and Richard S. Zemel, “End-to-end instance seg-

mentation with recurrent attention”, in The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017. arXiv:

1605.09410.

[85] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, “Faster

R-CNN: Towards real-time object detection with region proposal

networks”, in Advances in Neural Information Processing Systems

28 (NeurIPS), 2015. arXiv: 1506.01497.

https://arxiv.org/abs/1605.05273
https://arxiv.org/abs/1603.09246
https://arxiv.org/abs/1711.08028
https://doi.org/10.1007/BF00120662
https://arxiv.org/abs/1709.07871
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1605.09410
https://arxiv.org/abs/1506.01497

141

[86] S. Hamid Rezato�ghi, Roman Kaskman, Farbod T. Motlagh, Qin-

feng Shi, Daniel Cremers, Laura Leal-Taixé, and Ian Reid, “Deep

perm-set net: Learn to predict sets with unknown permuta-

tion and cardinality using deep neural networks”, 2018. arXiv:

1805.00613.

[87] Sara Sabour, Nicholas Frosst, and Geo�rey E Hinton, “Dynamic

routing between capsules”, in Advances in Neural Information

Processing Systems 30 (NeurIPS), 2017.

[88] Adam Santoro, David Raposo, David G Barrett, Mateusz Ma-

linowski, Razvan Pascanu, Peter Battaglia, and Tim Lillicrap,

“A simple neural network module for relational reasoning”, in

Advances in Neural Information Processing Systems 30 (NeurIPS),

2017. arXiv: 1706.01427.

[89] Aliaksei Severyn and Alessandro Moschitti, “Learning to rank

short text pairs with convolutional deep neural networks”, in

Special Interest Group on Information Retrieval (SIGIR), 2015.

[90] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen,

Kurt Mehlhorn, and Karsten M. Borgwardt, “Weisfeiler-Lehman

Graph Kernels”, Journal of Machine Learning Research, vol-

ume 12, pages 2539–2561, 2011, issn: 1532-4435.

[91] Zenglin Shi, Yangdong Ye, and Yunpeng Wu, “Rank-based pool-

ing for deep convolutional neural networks”, Neural Networks,

volume 83, pages 21–31, 2016, issn: 0893-6080.

[92] Martin Simonovsky and Nikos Komodakis, “GraphVAE: Towards

generation of small graphs using variational autoencoders”, in

International Conference on Arti�cial Neural Networks (ICANN),

2018. arXiv: 1802.03480.

[93] Richard Sinkhorn, “A relationship between arbitrary positive

matrices and doubly stochastic matrices”, The Annals of Math-

ematical Statistics, volume 35, number 2, pages 876–879, 1964.

doi: 10.1214/aoms/1177703591.

[94] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov, “Dropout: A simple way

to prevent neural networks from over�tting”, Journal of Machine

Learning Research, pages 1929–1958, 2014, issn: 1532-4435.

[95] Russell Stewart and Mykhaylo Andriluka, “End-to-end peo-

ple detection in crowded scenes”, in The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016. arXiv:

1506.04878.

https://arxiv.org/abs/1805.00613
https://arxiv.org/abs/1706.01427
https://arxiv.org/abs/1802.03480
https://doi.org/10.1214/aoms/1177703591
https://arxiv.org/abs/1506.04878

142

[96] Veselin Stoyanov, Alexander Ropson, and Jason Eisner, “Em-

pirical risk minimization of graphical model parameters given

approximate inference, decoding, and model structure”, in Pro-

ceedings of the 14th International Conference on Arti�cial Intelli-

gence and Statistics (AISTATS), 2011.

[97] Damien Teney, Peter Anderson, Xiaodong He, and Anton van

den Hengel, “Tips and tricks for visual question answering:

Learnings from the 2017 challenge”, in The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. arXiv:

1708.02711.

[98] Alexander Trott, Caiming Xiong, and Richard Socher, “Inter-

pretable counting for visual question answering”, in Interna-

tional Conference on Learning Representations (ICLR), 2018. arXiv:

1712.08697.

[99] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin,

“Attention is all you need”, in Advances in Neural Information

Processing Systems 30 (NeurIPS), 2017. arXiv: 1706.03762.

[100] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur, “Order Mat-

ters: Sequence to sequence for sets”, in International Conference

on Learning Representations (ICLR), 2015. arXiv: 1511.06391.

[101] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly, “Pointer

networks”, in Advances in Neural Information Processing Systems

28 (NeurIPS), 2015. arXiv: 1506.03134.

[102] Edward Wagsta�, Fabian B. Fuchs, Martin Engelcke, Ingmar Pos-

ner, and Michael A. Osborne, “On the limitations of representing

functions on sets”, in Proceedings of the 36th International Con-

ference on Machine Learning (ICML), 2019. arXiv: 1901.09006.

[103] Sean Welleck, Zixin Yao, Yu Gai, Jialin Mao, Zheng Zhang, and

Kyunghyun Cho, “Loss functions for multiset prediction”, in

Advances in Neural Information Processing Systems 31 (NeurIPS),

2018. arXiv: 1711.05246.

[104] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka,

“How powerful are graph neural networks?”, in International

Conference on Learning Representations (ICLR), 2019. arXiv: 1810.

00826.

[105] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian, “Fold-

ingNet: Point cloud auto-encoder via deep grid deformation”, in

The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2018. arXiv: 1712.07262.

https://arxiv.org/abs/1708.02711
https://arxiv.org/abs/1712.08697
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1511.06391
https://arxiv.org/abs/1506.03134
https://arxiv.org/abs/1901.09006
https://arxiv.org/abs/1711.05246
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1712.07262

143

[106] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alexan-

der J. Smola, “Stacked attention networks for image question

answering”, in The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. arXiv: 1511.02274.

[107] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will

Hamilton, and Jure Leskovec, “Hierarchical graph representation

learning with di�erentiable pooling”, in Advances in Neural

Information Processing Systems 31 (NeurIPS), 2018. arXiv: 1806.

08804.

[108] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and

Jure Leskovec, “GraphRNN: Generating realistic graphs with

deep auto-regressive models”, in Proceedings of the 35th Inter-

national Conference on Machine Learning (ICML), 2018. arXiv:

1802.08773.

[109] Seungil You, David Ding, Kevin Canini, Jan Pfeifer, and Maya

Gupta, “Deep Lattice Networks and Partial Monotonic Func-

tions”, in Advances in Neural Information Processing Systems 30

(NeurIPS), 2017. arXiv: 1709.06680 [stat.ML].

[110] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas

Poczos, Ruslan R Salakhutdinov, and Alexander J Smola, “Deep

Sets”, in Advances in Neural Information Processing Systems 30

(NeurIPS), 2017. arXiv: 1703.06114.

[111] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst,

Yujia Li, Igor Babuschkin, Karl Tuyls, David Reichert, Tim-

othy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria

Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals,

and Peter Battaglia, “Deep reinforcement learning with rela-

tional inductive biases”, in International Conference on Learning

Representations (ICLR), 2019.

[112] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen,

“An end-to-end deep learning architecture for graph classi�ca-

tion”, in Proceedings of the 32nd AAAI Conference on Arti�cial

Intelligence (AAAI), 2018.

[113] Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett, “Deep

Set Prediction Networks”, in Advances in Neural Information

Processing Systems 32 (NeurIPS), 2019. arXiv: 1906.06565.

[114] Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett, “FSPool:

Learning set representations with featurewise sort pooling”, in

NeurIPS workshop on Sets & Partitions, 2019. arXiv: 1906.02795.

https://arxiv.org/abs/1511.02274
https://arxiv.org/abs/1806.08804
https://arxiv.org/abs/1806.08804
https://arxiv.org/abs/1802.08773
https://arxiv.org/abs/1709.06680
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1906.06565
https://arxiv.org/abs/1906.02795

144

[115] Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett, “Learning

representations of sets through optimized permutations”, in

International Conference on Learning Representations (ICLR), 2019.

arXiv: 1812.03928.

[116] Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett, “Learning

to count objects in natural images for visual question answering”,

in International Conference on Learning Representations (ICLR),

2018. arXiv: 1802.05766.

[117] Yu Zhou, Yu Jun, Xiang Chenchao, Fan Jianping, and Tao

Dacheng, “Beyond bilinear: Generalized multi-modal factor-

ized high-order pooling for visual question answering”, 2017.

arXiv: 1708.03619.

[118] Chen Zhu, Yanpeng Zhao, Shuaiyi Huang, Kewei Tu, and Yi Ma,

“Structured attentions for visual question answering”, in The

IEEE International Conference on Computer Vision (ICCV), 2017.

arXiv: 1708.02071.

https://arxiv.org/abs/1812.03928
https://arxiv.org/abs/1802.05766
https://arxiv.org/abs/1708.03619
https://arxiv.org/abs/1708.02071

	List of figures
	List of tables
	Declaration of authorship
	Acknowledgements
	List of abbreviations
	Sets in machine learning
	List of contributions

	Basics of set neural networks
	Overview
	Representation in memory
	Set encoders
	Properties
	Specific set encoders
	Pooling bottleneck

	Set decoders
	Set losses
	Predicting sets

	Other sets in machine learning
	Pooling in CNNs
	Per-element prediction
	Multi-labeling
	Clustering

	Motivation: Counting in visual question answering
	Introduction
	Related work
	Problems with soft attention
	Counting module
	Piecewise linear activation
	Input
	Deduplication
	Output
	Output confidence

	Experiments
	Toy task
	VQA

	Conclusion

	Set encoder: Permutation-optimisation
	Introduction
	Permutation-optimisation module
	Total cost function
	Optimisation problem
	Ordering cost function
	Extending permutations to lattices
	Justification for alternative update
	Quadratic programming formulation

	Related work
	Experiments
	Sorting numbers
	Re-assembling image mosaics
	Implicit permutations through classification
	Visual question answering

	Analysis of learned comparisons
	Number sorting
	Image mosaics

	Discussion

	Set auto-encoder: Featurewise sort pooling
	Introduction
	Background
	Responsibility problem
	Formal statement

	Featurewise sort pooling
	Fixed-size sets
	Variable-size sets
	Auto-encoder

	Related work
	Experiments
	Rotating polygons
	Noisy MNIST reconstruction
	Noisy MNIST classification
	CLEVR
	Graph classification

	Discussion

	Set decoder: Deep set prediction networks
	Introduction
	Background
	Deep set prediction networks
	Proof of permutation-equivariance
	Auto-encoding fixed-size sets
	Predicting sets from a feature vector

	Related work
	Experiments
	MNIST
	Bounding box prediction
	Object attribute prediction

	Discussion

	Future work
	Set encoders
	Set decoders
	Applications

	Latent sets in neural networks

	Appendix: Experimental details
	Counting in visual question answering
	Permutation-optimisation
	Sorting numbers
	Re-assembling image mosaics
	Implicit permutations through classification
	Visual question answering

	Featurewise sort pooling
	Polygons
	MNIST
	CLEVR
	Graph classification

	Deep set prediction networks
	MNIST
	CLEVR

	Bibliography

